L(s) = 1 | + (0.809 + 0.587i)2-s + (−0.118 + 0.363i)3-s + (0.309 + 0.951i)4-s + (0.809 − 0.587i)5-s + (−0.309 + 0.224i)6-s + (−0.309 + 0.951i)8-s + (2.30 + 1.67i)9-s + 10-s + (−3.30 + 0.224i)11-s − 0.381·12-s + (−5.23 − 3.80i)13-s + (0.118 + 0.363i)15-s + (−0.809 + 0.587i)16-s + (4.11 − 2.99i)17-s + (0.881 + 2.71i)18-s + (1.19 − 3.66i)19-s + ⋯ |
L(s) = 1 | + (0.572 + 0.415i)2-s + (−0.0681 + 0.209i)3-s + (0.154 + 0.475i)4-s + (0.361 − 0.262i)5-s + (−0.126 + 0.0916i)6-s + (−0.109 + 0.336i)8-s + (0.769 + 0.559i)9-s + 0.316·10-s + (−0.997 + 0.0676i)11-s − 0.110·12-s + (−1.45 − 1.05i)13-s + (0.0304 + 0.0937i)15-s + (−0.202 + 0.146i)16-s + (0.998 − 0.725i)17-s + (0.207 + 0.639i)18-s + (0.273 − 0.840i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 110 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.751 - 0.659i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 110 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.751 - 0.659i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.27359 + 0.479265i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.27359 + 0.479265i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.809 - 0.587i)T \) |
| 5 | \( 1 + (-0.809 + 0.587i)T \) |
| 11 | \( 1 + (3.30 - 0.224i)T \) |
good | 3 | \( 1 + (0.118 - 0.363i)T + (-2.42 - 1.76i)T^{2} \) |
| 7 | \( 1 + (-5.66 + 4.11i)T^{2} \) |
| 13 | \( 1 + (5.23 + 3.80i)T + (4.01 + 12.3i)T^{2} \) |
| 17 | \( 1 + (-4.11 + 2.99i)T + (5.25 - 16.1i)T^{2} \) |
| 19 | \( 1 + (-1.19 + 3.66i)T + (-15.3 - 11.1i)T^{2} \) |
| 23 | \( 1 + 6T + 23T^{2} \) |
| 29 | \( 1 + (-1.47 - 4.53i)T + (-23.4 + 17.0i)T^{2} \) |
| 31 | \( 1 + (-3 - 2.17i)T + (9.57 + 29.4i)T^{2} \) |
| 37 | \( 1 + (0.618 + 1.90i)T + (-29.9 + 21.7i)T^{2} \) |
| 41 | \( 1 + (1.5 - 4.61i)T + (-33.1 - 24.0i)T^{2} \) |
| 43 | \( 1 + 2.85T + 43T^{2} \) |
| 47 | \( 1 + (3.47 - 10.6i)T + (-38.0 - 27.6i)T^{2} \) |
| 53 | \( 1 + (-2.85 - 2.07i)T + (16.3 + 50.4i)T^{2} \) |
| 59 | \( 1 + (-3.57 - 10.9i)T + (-47.7 + 34.6i)T^{2} \) |
| 61 | \( 1 + (-6.23 + 4.53i)T + (18.8 - 58.0i)T^{2} \) |
| 67 | \( 1 + 0.618T + 67T^{2} \) |
| 71 | \( 1 + (-3.85 + 2.80i)T + (21.9 - 67.5i)T^{2} \) |
| 73 | \( 1 + (-0.354 - 1.08i)T + (-59.0 + 42.9i)T^{2} \) |
| 79 | \( 1 + (5.85 + 4.25i)T + (24.4 + 75.1i)T^{2} \) |
| 83 | \( 1 + (-10.0 + 7.27i)T + (25.6 - 78.9i)T^{2} \) |
| 89 | \( 1 + 4.09T + 89T^{2} \) |
| 97 | \( 1 + (-6.16 - 4.47i)T + (29.9 + 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.73391452145476024895067148773, −12.86713089025695066018477637692, −12.05506198831344428589950581182, −10.46222840186804594494285796650, −9.740094405059532301928704756411, −8.006191806351943963938259972958, −7.21336146360984947067669365029, −5.44709701688329747017714584992, −4.77789797796261333236016272799, −2.75699032752421946147303638615,
2.13842502971745984363604282403, 3.94314863791427471019210633483, 5.42485017875667382003178062924, 6.68019280906200264330130118684, 7.896920547700136663311500835972, 9.851033880046425376611521368883, 10.15178375608840098602327926718, 11.84872826613371982670096117731, 12.38585377805247943848938960898, 13.51763371679693611936319606322