Properties

Label 2-110-1.1-c5-0-11
Degree $2$
Conductor $110$
Sign $-1$
Analytic cond. $17.6422$
Root an. cond. $4.20026$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·2-s + 12·3-s + 16·4-s − 25·5-s − 48·6-s + 54·7-s − 64·8-s − 99·9-s + 100·10-s − 121·11-s + 192·12-s − 540·13-s − 216·14-s − 300·15-s + 256·16-s + 340·17-s + 396·18-s − 952·19-s − 400·20-s + 648·21-s + 484·22-s + 1.09e3·23-s − 768·24-s + 625·25-s + 2.16e3·26-s − 4.10e3·27-s + 864·28-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.769·3-s + 1/2·4-s − 0.447·5-s − 0.544·6-s + 0.416·7-s − 0.353·8-s − 0.407·9-s + 0.316·10-s − 0.301·11-s + 0.384·12-s − 0.886·13-s − 0.294·14-s − 0.344·15-s + 1/4·16-s + 0.285·17-s + 0.288·18-s − 0.604·19-s − 0.223·20-s + 0.320·21-s + 0.213·22-s + 0.430·23-s − 0.272·24-s + 1/5·25-s + 0.626·26-s − 1.08·27-s + 0.208·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 110 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 110 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(110\)    =    \(2 \cdot 5 \cdot 11\)
Sign: $-1$
Analytic conductor: \(17.6422\)
Root analytic conductor: \(4.20026\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 110,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + p^{2} T \)
5 \( 1 + p^{2} T \)
11 \( 1 + p^{2} T \)
good3 \( 1 - 4 p T + p^{5} T^{2} \)
7 \( 1 - 54 T + p^{5} T^{2} \)
13 \( 1 + 540 T + p^{5} T^{2} \)
17 \( 1 - 20 p T + p^{5} T^{2} \)
19 \( 1 + 952 T + p^{5} T^{2} \)
23 \( 1 - 1092 T + p^{5} T^{2} \)
29 \( 1 + 62 T + p^{5} T^{2} \)
31 \( 1 + 7560 T + p^{5} T^{2} \)
37 \( 1 + 9186 T + p^{5} T^{2} \)
41 \( 1 + 6818 T + p^{5} T^{2} \)
43 \( 1 + 13310 T + p^{5} T^{2} \)
47 \( 1 + 22420 T + p^{5} T^{2} \)
53 \( 1 - 19654 T + p^{5} T^{2} \)
59 \( 1 - 48292 T + p^{5} T^{2} \)
61 \( 1 - 17530 T + p^{5} T^{2} \)
67 \( 1 + 35344 T + p^{5} T^{2} \)
71 \( 1 + 22912 T + p^{5} T^{2} \)
73 \( 1 - 47852 T + p^{5} T^{2} \)
79 \( 1 - 52396 T + p^{5} T^{2} \)
83 \( 1 - 7890 T + p^{5} T^{2} \)
89 \( 1 - 41958 T + p^{5} T^{2} \)
97 \( 1 + 37602 T + p^{5} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.02661667512864949047564501864, −11.06143890428613164497064308525, −9.901003029529095983874824832745, −8.755048912485438801279000836892, −8.027534617609041363111495345881, −6.98729395990191357659298751840, −5.20265702733817596526387407457, −3.39750248986186982393695630272, −2.03377158952164860109626503500, 0, 2.03377158952164860109626503500, 3.39750248986186982393695630272, 5.20265702733817596526387407457, 6.98729395990191357659298751840, 8.027534617609041363111495345881, 8.755048912485438801279000836892, 9.901003029529095983874824832745, 11.06143890428613164497064308525, 12.02661667512864949047564501864

Graph of the $Z$-function along the critical line