Properties

Label 2-10e3-1000.109-c1-0-114
Degree $2$
Conductor $1000$
Sign $0.954 - 0.298i$
Analytic cond. $7.98504$
Root an. cond. $2.82578$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.374 + 1.36i)2-s + (1.03 + 1.25i)3-s + (−1.71 + 1.02i)4-s + (−2.03 − 0.933i)5-s + (−1.32 + 1.88i)6-s + (3.03 − 0.985i)7-s + (−2.03 − 1.96i)8-s + (0.0665 − 0.348i)9-s + (0.512 − 3.12i)10-s + (0.494 − 3.91i)11-s + (−3.06 − 1.09i)12-s + (1.16 − 6.13i)13-s + (2.47 + 3.76i)14-s + (−0.936 − 3.51i)15-s + (1.91 − 3.51i)16-s + (0.0165 + 0.0645i)17-s + ⋯
L(s)  = 1  + (0.264 + 0.964i)2-s + (0.598 + 0.723i)3-s + (−0.859 + 0.510i)4-s + (−0.908 − 0.417i)5-s + (−0.539 + 0.768i)6-s + (1.14 − 0.372i)7-s + (−0.719 − 0.694i)8-s + (0.0221 − 0.116i)9-s + (0.162 − 0.986i)10-s + (0.149 − 1.18i)11-s + (−0.883 − 0.316i)12-s + (0.324 − 1.70i)13-s + (0.662 + 1.00i)14-s + (−0.241 − 0.907i)15-s + (0.479 − 0.877i)16-s + (0.00401 + 0.0156i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1000 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.954 - 0.298i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1000 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.954 - 0.298i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1000\)    =    \(2^{3} \cdot 5^{3}\)
Sign: $0.954 - 0.298i$
Analytic conductor: \(7.98504\)
Root analytic conductor: \(2.82578\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1000} (109, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1000,\ (\ :1/2),\ 0.954 - 0.298i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.75651 + 0.268567i\)
\(L(\frac12)\) \(\approx\) \(1.75651 + 0.268567i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.374 - 1.36i)T \)
5 \( 1 + (2.03 + 0.933i)T \)
good3 \( 1 + (-1.03 - 1.25i)T + (-0.562 + 2.94i)T^{2} \)
7 \( 1 + (-3.03 + 0.985i)T + (5.66 - 4.11i)T^{2} \)
11 \( 1 + (-0.494 + 3.91i)T + (-10.6 - 2.73i)T^{2} \)
13 \( 1 + (-1.16 + 6.13i)T + (-12.0 - 4.78i)T^{2} \)
17 \( 1 + (-0.0165 - 0.0645i)T + (-14.8 + 8.18i)T^{2} \)
19 \( 1 + (-0.990 - 0.819i)T + (3.56 + 18.6i)T^{2} \)
23 \( 1 + (-1.62 + 1.72i)T + (-1.44 - 22.9i)T^{2} \)
29 \( 1 + (9.62 - 0.605i)T + (28.7 - 3.63i)T^{2} \)
31 \( 1 + (0.832 - 0.213i)T + (27.1 - 14.9i)T^{2} \)
37 \( 1 + (3.43 + 1.88i)T + (19.8 + 31.2i)T^{2} \)
41 \( 1 + (8.51 - 7.99i)T + (2.57 - 40.9i)T^{2} \)
43 \( 1 + (3.73 - 2.71i)T + (13.2 - 40.8i)T^{2} \)
47 \( 1 + (2.15 + 5.44i)T + (-34.2 + 32.1i)T^{2} \)
53 \( 1 + (2.02 - 3.19i)T + (-22.5 - 47.9i)T^{2} \)
59 \( 1 + (-5.44 + 2.56i)T + (37.6 - 45.4i)T^{2} \)
61 \( 1 + (-10.4 + 11.1i)T + (-3.83 - 60.8i)T^{2} \)
67 \( 1 + (-0.309 + 4.92i)T + (-66.4 - 8.39i)T^{2} \)
71 \( 1 + (-14.1 + 5.60i)T + (51.7 - 48.6i)T^{2} \)
73 \( 1 + (-5.00 - 2.35i)T + (46.5 + 56.2i)T^{2} \)
79 \( 1 + (-6.64 - 8.03i)T + (-14.8 + 77.6i)T^{2} \)
83 \( 1 + (9.27 - 11.2i)T + (-15.5 - 81.5i)T^{2} \)
89 \( 1 + (2.42 - 5.14i)T + (-56.7 - 68.5i)T^{2} \)
97 \( 1 + (-13.3 + 0.842i)T + (96.2 - 12.1i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.769546793535639235683440814182, −8.813343476418781732112527325155, −8.125340034233242729414565243614, −7.956689361612116065389582107167, −6.70457309035153320720541434100, −5.41617107060947458500037747497, −4.88911444147228906996454876615, −3.60854426370646871600345668426, −3.46307550961015008985497750714, −0.74634738730031863041203802926, 1.70465684374024872049091682739, 2.12916283871518315638115187001, 3.56662146998474967508554955127, 4.44786747012139075490261211173, 5.23325925302042532027295291191, 6.87087686383242061096576819538, 7.43606496419715563049613014405, 8.443145713926678857039998134029, 8.971935086274592730801059935353, 10.01969918218834919305944809930

Graph of the $Z$-function along the critical line