L(s) = 1 | + (0.374 + 1.36i)2-s + (1.03 + 1.25i)3-s + (−1.71 + 1.02i)4-s + (−2.03 − 0.933i)5-s + (−1.32 + 1.88i)6-s + (3.03 − 0.985i)7-s + (−2.03 − 1.96i)8-s + (0.0665 − 0.348i)9-s + (0.512 − 3.12i)10-s + (0.494 − 3.91i)11-s + (−3.06 − 1.09i)12-s + (1.16 − 6.13i)13-s + (2.47 + 3.76i)14-s + (−0.936 − 3.51i)15-s + (1.91 − 3.51i)16-s + (0.0165 + 0.0645i)17-s + ⋯ |
L(s) = 1 | + (0.264 + 0.964i)2-s + (0.598 + 0.723i)3-s + (−0.859 + 0.510i)4-s + (−0.908 − 0.417i)5-s + (−0.539 + 0.768i)6-s + (1.14 − 0.372i)7-s + (−0.719 − 0.694i)8-s + (0.0221 − 0.116i)9-s + (0.162 − 0.986i)10-s + (0.149 − 1.18i)11-s + (−0.883 − 0.316i)12-s + (0.324 − 1.70i)13-s + (0.662 + 1.00i)14-s + (−0.241 − 0.907i)15-s + (0.479 − 0.877i)16-s + (0.00401 + 0.0156i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1000 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.954 - 0.298i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1000 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.954 - 0.298i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.75651 + 0.268567i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.75651 + 0.268567i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.374 - 1.36i)T \) |
| 5 | \( 1 + (2.03 + 0.933i)T \) |
good | 3 | \( 1 + (-1.03 - 1.25i)T + (-0.562 + 2.94i)T^{2} \) |
| 7 | \( 1 + (-3.03 + 0.985i)T + (5.66 - 4.11i)T^{2} \) |
| 11 | \( 1 + (-0.494 + 3.91i)T + (-10.6 - 2.73i)T^{2} \) |
| 13 | \( 1 + (-1.16 + 6.13i)T + (-12.0 - 4.78i)T^{2} \) |
| 17 | \( 1 + (-0.0165 - 0.0645i)T + (-14.8 + 8.18i)T^{2} \) |
| 19 | \( 1 + (-0.990 - 0.819i)T + (3.56 + 18.6i)T^{2} \) |
| 23 | \( 1 + (-1.62 + 1.72i)T + (-1.44 - 22.9i)T^{2} \) |
| 29 | \( 1 + (9.62 - 0.605i)T + (28.7 - 3.63i)T^{2} \) |
| 31 | \( 1 + (0.832 - 0.213i)T + (27.1 - 14.9i)T^{2} \) |
| 37 | \( 1 + (3.43 + 1.88i)T + (19.8 + 31.2i)T^{2} \) |
| 41 | \( 1 + (8.51 - 7.99i)T + (2.57 - 40.9i)T^{2} \) |
| 43 | \( 1 + (3.73 - 2.71i)T + (13.2 - 40.8i)T^{2} \) |
| 47 | \( 1 + (2.15 + 5.44i)T + (-34.2 + 32.1i)T^{2} \) |
| 53 | \( 1 + (2.02 - 3.19i)T + (-22.5 - 47.9i)T^{2} \) |
| 59 | \( 1 + (-5.44 + 2.56i)T + (37.6 - 45.4i)T^{2} \) |
| 61 | \( 1 + (-10.4 + 11.1i)T + (-3.83 - 60.8i)T^{2} \) |
| 67 | \( 1 + (-0.309 + 4.92i)T + (-66.4 - 8.39i)T^{2} \) |
| 71 | \( 1 + (-14.1 + 5.60i)T + (51.7 - 48.6i)T^{2} \) |
| 73 | \( 1 + (-5.00 - 2.35i)T + (46.5 + 56.2i)T^{2} \) |
| 79 | \( 1 + (-6.64 - 8.03i)T + (-14.8 + 77.6i)T^{2} \) |
| 83 | \( 1 + (9.27 - 11.2i)T + (-15.5 - 81.5i)T^{2} \) |
| 89 | \( 1 + (2.42 - 5.14i)T + (-56.7 - 68.5i)T^{2} \) |
| 97 | \( 1 + (-13.3 + 0.842i)T + (96.2 - 12.1i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.769546793535639235683440814182, −8.813343476418781732112527325155, −8.125340034233242729414565243614, −7.956689361612116065389582107167, −6.70457309035153320720541434100, −5.41617107060947458500037747497, −4.88911444147228906996454876615, −3.60854426370646871600345668426, −3.46307550961015008985497750714, −0.74634738730031863041203802926,
1.70465684374024872049091682739, 2.12916283871518315638115187001, 3.56662146998474967508554955127, 4.44786747012139075490261211173, 5.23325925302042532027295291191, 6.87087686383242061096576819538, 7.43606496419715563049613014405, 8.443145713926678857039998134029, 8.971935086274592730801059935353, 10.01969918218834919305944809930