Properties

Label 2-10e3-1000.109-c1-0-113
Degree $2$
Conductor $1000$
Sign $-0.104 - 0.994i$
Analytic cond. $7.98504$
Root an. cond. $2.82578$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.952 − 1.04i)2-s + (−1.51 − 1.82i)3-s + (−0.183 + 1.99i)4-s + (−1.84 + 1.26i)5-s + (−0.469 + 3.32i)6-s + (1.14 − 0.373i)7-s + (2.25 − 1.70i)8-s + (−0.493 + 2.58i)9-s + (3.07 + 0.717i)10-s + (0.0547 − 0.433i)11-s + (3.92 − 2.67i)12-s + (1.06 − 5.56i)13-s + (−1.48 − 0.844i)14-s + (5.10 + 1.45i)15-s + (−3.93 − 0.732i)16-s + (−0.908 − 3.54i)17-s + ⋯
L(s)  = 1  + (−0.673 − 0.738i)2-s + (−0.873 − 1.05i)3-s + (−0.0918 + 0.995i)4-s + (−0.823 + 0.566i)5-s + (−0.191 + 1.35i)6-s + (0.434 − 0.141i)7-s + (0.797 − 0.603i)8-s + (−0.164 + 0.862i)9-s + (0.973 + 0.226i)10-s + (0.0164 − 0.130i)11-s + (1.13 − 0.772i)12-s + (0.294 − 1.54i)13-s + (−0.396 − 0.225i)14-s + (1.31 + 0.374i)15-s + (−0.983 − 0.183i)16-s + (−0.220 − 0.858i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1000 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.104 - 0.994i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1000 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.104 - 0.994i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1000\)    =    \(2^{3} \cdot 5^{3}\)
Sign: $-0.104 - 0.994i$
Analytic conductor: \(7.98504\)
Root analytic conductor: \(2.82578\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1000} (109, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1000,\ (\ :1/2),\ -0.104 - 0.994i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.0889247 + 0.0988028i\)
\(L(\frac12)\) \(\approx\) \(0.0889247 + 0.0988028i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.952 + 1.04i)T \)
5 \( 1 + (1.84 - 1.26i)T \)
good3 \( 1 + (1.51 + 1.82i)T + (-0.562 + 2.94i)T^{2} \)
7 \( 1 + (-1.14 + 0.373i)T + (5.66 - 4.11i)T^{2} \)
11 \( 1 + (-0.0547 + 0.433i)T + (-10.6 - 2.73i)T^{2} \)
13 \( 1 + (-1.06 + 5.56i)T + (-12.0 - 4.78i)T^{2} \)
17 \( 1 + (0.908 + 3.54i)T + (-14.8 + 8.18i)T^{2} \)
19 \( 1 + (0.713 + 0.590i)T + (3.56 + 18.6i)T^{2} \)
23 \( 1 + (2.46 - 2.62i)T + (-1.44 - 22.9i)T^{2} \)
29 \( 1 + (1.13 - 0.0714i)T + (28.7 - 3.63i)T^{2} \)
31 \( 1 + (1.91 - 0.492i)T + (27.1 - 14.9i)T^{2} \)
37 \( 1 + (-5.46 - 3.00i)T + (19.8 + 31.2i)T^{2} \)
41 \( 1 + (1.01 - 0.953i)T + (2.57 - 40.9i)T^{2} \)
43 \( 1 + (0.917 - 0.666i)T + (13.2 - 40.8i)T^{2} \)
47 \( 1 + (-0.163 - 0.414i)T + (-34.2 + 32.1i)T^{2} \)
53 \( 1 + (-3.35 + 5.28i)T + (-22.5 - 47.9i)T^{2} \)
59 \( 1 + (11.8 - 5.58i)T + (37.6 - 45.4i)T^{2} \)
61 \( 1 + (-5.48 + 5.84i)T + (-3.83 - 60.8i)T^{2} \)
67 \( 1 + (-0.157 + 2.50i)T + (-66.4 - 8.39i)T^{2} \)
71 \( 1 + (-1.62 + 0.643i)T + (51.7 - 48.6i)T^{2} \)
73 \( 1 + (11.4 + 5.37i)T + (46.5 + 56.2i)T^{2} \)
79 \( 1 + (0.162 + 0.196i)T + (-14.8 + 77.6i)T^{2} \)
83 \( 1 + (4.26 - 5.15i)T + (-15.5 - 81.5i)T^{2} \)
89 \( 1 + (4.54 - 9.65i)T + (-56.7 - 68.5i)T^{2} \)
97 \( 1 + (-7.93 + 0.499i)T + (96.2 - 12.1i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.492443909991096868245480922382, −8.225059611976791292659781538731, −7.76202053378606069791388546464, −7.10094819439435319210814292347, −6.16459314325340137080700521429, −4.95975962831310569299393904318, −3.66793022063997875918495489194, −2.65538421219195759031946409169, −1.19495991440848228813316401568, −0.098775337807588468148548527664, 1.69884571223267621279671883228, 4.16528947176552493421226766865, 4.41432919897567228862862186243, 5.46307110167803932111663443200, 6.25833770010383475756471578479, 7.26321591928912268453175158431, 8.261301710357903832488593101260, 8.898112386374693362391246534175, 9.658298303310616702350920825854, 10.52953018907459576231164876934

Graph of the $Z$-function along the critical line