Properties

Label 2-10e3-1000.109-c1-0-106
Degree $2$
Conductor $1000$
Sign $0.707 + 0.706i$
Analytic cond. $7.98504$
Root an. cond. $2.82578$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.126 + 1.40i)2-s + (−0.698 − 0.843i)3-s + (−1.96 + 0.356i)4-s + (2.03 − 0.937i)5-s + (1.10 − 1.09i)6-s + (1.23 − 0.401i)7-s + (−0.750 − 2.72i)8-s + (0.337 − 1.76i)9-s + (1.57 + 2.74i)10-s + (−0.219 + 1.73i)11-s + (1.67 + 1.41i)12-s + (0.0419 − 0.220i)13-s + (0.721 + 1.69i)14-s + (−2.20 − 1.05i)15-s + (3.74 − 1.40i)16-s + (−0.945 − 3.68i)17-s + ⋯
L(s)  = 1  + (0.0893 + 0.995i)2-s + (−0.403 − 0.487i)3-s + (−0.984 + 0.178i)4-s + (0.907 − 0.419i)5-s + (0.449 − 0.444i)6-s + (0.467 − 0.151i)7-s + (−0.265 − 0.964i)8-s + (0.112 − 0.589i)9-s + (0.498 + 0.866i)10-s + (−0.0660 + 0.522i)11-s + (0.483 + 0.407i)12-s + (0.0116 − 0.0610i)13-s + (0.192 + 0.451i)14-s + (−0.570 − 0.273i)15-s + (0.936 − 0.350i)16-s + (−0.229 − 0.893i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1000 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.707 + 0.706i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1000 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.707 + 0.706i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1000\)    =    \(2^{3} \cdot 5^{3}\)
Sign: $0.707 + 0.706i$
Analytic conductor: \(7.98504\)
Root analytic conductor: \(2.82578\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1000} (109, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1000,\ (\ :1/2),\ 0.707 + 0.706i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.20258 - 0.497275i\)
\(L(\frac12)\) \(\approx\) \(1.20258 - 0.497275i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.126 - 1.40i)T \)
5 \( 1 + (-2.03 + 0.937i)T \)
good3 \( 1 + (0.698 + 0.843i)T + (-0.562 + 2.94i)T^{2} \)
7 \( 1 + (-1.23 + 0.401i)T + (5.66 - 4.11i)T^{2} \)
11 \( 1 + (0.219 - 1.73i)T + (-10.6 - 2.73i)T^{2} \)
13 \( 1 + (-0.0419 + 0.220i)T + (-12.0 - 4.78i)T^{2} \)
17 \( 1 + (0.945 + 3.68i)T + (-14.8 + 8.18i)T^{2} \)
19 \( 1 + (4.99 + 4.13i)T + (3.56 + 18.6i)T^{2} \)
23 \( 1 + (1.85 - 1.97i)T + (-1.44 - 22.9i)T^{2} \)
29 \( 1 + (6.22 - 0.391i)T + (28.7 - 3.63i)T^{2} \)
31 \( 1 + (-4.02 + 1.03i)T + (27.1 - 14.9i)T^{2} \)
37 \( 1 + (3.21 + 1.76i)T + (19.8 + 31.2i)T^{2} \)
41 \( 1 + (-7.66 + 7.19i)T + (2.57 - 40.9i)T^{2} \)
43 \( 1 + (-3.84 + 2.79i)T + (13.2 - 40.8i)T^{2} \)
47 \( 1 + (1.13 + 2.86i)T + (-34.2 + 32.1i)T^{2} \)
53 \( 1 + (-3.38 + 5.33i)T + (-22.5 - 47.9i)T^{2} \)
59 \( 1 + (0.877 - 0.413i)T + (37.6 - 45.4i)T^{2} \)
61 \( 1 + (-5.80 + 6.18i)T + (-3.83 - 60.8i)T^{2} \)
67 \( 1 + (-0.0875 + 1.39i)T + (-66.4 - 8.39i)T^{2} \)
71 \( 1 + (-8.36 + 3.31i)T + (51.7 - 48.6i)T^{2} \)
73 \( 1 + (-3.45 - 1.62i)T + (46.5 + 56.2i)T^{2} \)
79 \( 1 + (-8.56 - 10.3i)T + (-14.8 + 77.6i)T^{2} \)
83 \( 1 + (3.77 - 4.56i)T + (-15.5 - 81.5i)T^{2} \)
89 \( 1 + (-5.89 + 12.5i)T + (-56.7 - 68.5i)T^{2} \)
97 \( 1 + (1.94 - 0.122i)T + (96.2 - 12.1i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.460782923402346874312914184306, −9.136050467723778623787462442121, −8.064976397106634746415636125217, −7.10558118812971810455238698150, −6.55502581484478184985992666205, −5.63801217288106250016136044896, −4.92979393288255311905752083087, −3.94675866495104201993878078818, −2.14268129458715080427407005831, −0.61936943933667268905705157984, 1.64192919615597074443908972873, 2.49090698225065325819893569292, 3.84585306727475836435809221601, 4.70067399844958836554148888482, 5.68052229948389265106742632518, 6.24429920405756944738496391441, 7.897150295563840233799261480549, 8.590582900870404760438343870702, 9.601989645959676326074783225423, 10.28728899100580203887939445013

Graph of the $Z$-function along the critical line