L(s) = 1 | + (12.4 − 10i)2-s − 99.9·3-s + (56 − 249. i)4-s + (−1.24e3 + 999. i)6-s + 1.39e3·7-s + (−1.79e3 − 3.68e3i)8-s + 3.42e3·9-s + 1.84e4i·11-s + (−5.59e3 + 2.49e4i)12-s + 5.47e3i·13-s + (1.74e4 − 1.39e4i)14-s + (−5.92e4 − 2.79e4i)16-s + 7.30e4i·17-s + (4.27e4 − 3.42e4i)18-s − 1.94e4i·19-s + ⋯ |
L(s) = 1 | + (0.780 − 0.625i)2-s − 1.23·3-s + (0.218 − 0.975i)4-s + (−0.962 + 0.770i)6-s + 0.582·7-s + (−0.439 − 0.898i)8-s + 0.521·9-s + 1.26i·11-s + (−0.269 + 1.20i)12-s + 0.191i·13-s + (0.454 − 0.364i)14-s + (−0.904 − 0.426i)16-s + 0.875i·17-s + (0.407 − 0.326i)18-s − 0.149i·19-s + ⋯ |
Λ(s)=(=(100s/2ΓC(s)L(s)(0.774+0.632i)Λ(9−s)
Λ(s)=(=(100s/2ΓC(s+4)L(s)(0.774+0.632i)Λ(1−s)
Degree: |
2 |
Conductor: |
100
= 22⋅52
|
Sign: |
0.774+0.632i
|
Analytic conductor: |
40.7378 |
Root analytic conductor: |
6.38262 |
Motivic weight: |
8 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ100(99,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 100, ( :4), 0.774+0.632i)
|
Particular Values
L(29) |
≈ |
1.90541−0.678500i |
L(21) |
≈ |
1.90541−0.678500i |
L(5) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−12.4+10i)T |
| 5 | 1 |
good | 3 | 1+99.9T+6.56e3T2 |
| 7 | 1−1.39e3T+5.76e6T2 |
| 11 | 1−1.84e4iT−2.14e8T2 |
| 13 | 1−5.47e3iT−8.15e8T2 |
| 17 | 1−7.30e4iT−6.97e9T2 |
| 19 | 1+1.94e4iT−1.69e10T2 |
| 23 | 1−2.37e5T+7.83e10T2 |
| 29 | 1−1.28e5T+5.00e11T2 |
| 31 | 1−6.79e4iT−8.52e11T2 |
| 37 | 1+3.47e6iT−3.51e12T2 |
| 41 | 1−2.14e6T+7.98e12T2 |
| 43 | 1−5.92e6T+1.16e13T2 |
| 47 | 1−7.62e6T+2.38e13T2 |
| 53 | 1+8.24e5iT−6.22e13T2 |
| 59 | 1+3.72e6iT−1.46e14T2 |
| 61 | 1+1.47e7T+1.91e14T2 |
| 67 | 1−1.52e7T+4.06e14T2 |
| 71 | 1−1.19e6iT−6.45e14T2 |
| 73 | 1−5.72e6iT−8.06e14T2 |
| 79 | 1−3.59e7iT−1.51e15T2 |
| 83 | 1−5.19e7T+2.25e15T2 |
| 89 | 1−8.33e7T+3.93e15T2 |
| 97 | 1−1.20e8iT−7.83e15T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.25225481705429538781857508678, −11.11043805322940385782350800311, −10.59782917104236340226055044393, −9.261400447648240787522565066430, −7.28130181556114174678556267424, −6.08560739930847843434080203054, −5.08320770220900098195877677616, −4.15543173806726832947544351467, −2.20001888641156286560004395033, −0.872563177910579807577212355639,
0.73561387542887190921855179860, 2.97334499042874556738589683028, 4.61221185586976884344238850829, 5.52685017118081355350090211770, 6.37017927208305022465075357903, 7.64163071005776073308637645796, 8.860597398516756354037583530501, 10.80386081314715990633288611430, 11.45832858951779295515523399615, 12.29215958328603789289334640537