Properties

Label 2-10e2-20.19-c8-0-24
Degree $2$
Conductor $100$
Sign $-0.390 + 0.920i$
Analytic cond. $40.7378$
Root an. cond. $6.38262$
Motivic weight $8$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (6.70 − 14.5i)2-s − 150.·3-s + (−166. − 194. i)4-s + (−1.00e3 + 2.18e3i)6-s − 2.62e3·7-s + (−3.94e3 + 1.10e3i)8-s + 1.60e4·9-s − 2.30e3i·11-s + (2.49e4 + 2.92e4i)12-s + 4.70e4i·13-s + (−1.76e4 + 3.81e4i)14-s + (−1.03e4 + 6.47e4i)16-s + 5.19e4i·17-s + (1.07e5 − 2.32e5i)18-s − 5.95e4i·19-s + ⋯
L(s)  = 1  + (0.419 − 0.907i)2-s − 1.85·3-s + (−0.648 − 0.760i)4-s + (−0.777 + 1.68i)6-s − 1.09·7-s + (−0.962 + 0.270i)8-s + 2.43·9-s − 0.157i·11-s + (1.20 + 1.41i)12-s + 1.64i·13-s + (−0.458 + 0.993i)14-s + (−0.158 + 0.987i)16-s + 0.622i·17-s + (1.02 − 2.21i)18-s − 0.456i·19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 100 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.390 + 0.920i)\, \overline{\Lambda}(9-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 100 ^{s/2} \, \Gamma_{\C}(s+4) \, L(s)\cr =\mathstrut & (-0.390 + 0.920i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(100\)    =    \(2^{2} \cdot 5^{2}\)
Sign: $-0.390 + 0.920i$
Analytic conductor: \(40.7378\)
Root analytic conductor: \(6.38262\)
Motivic weight: \(8\)
Rational: no
Arithmetic: yes
Character: $\chi_{100} (99, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 100,\ (\ :4),\ -0.390 + 0.920i)\)

Particular Values

\(L(\frac{9}{2})\) \(\approx\) \(0.269569 - 0.407157i\)
\(L(\frac12)\) \(\approx\) \(0.269569 - 0.407157i\)
\(L(5)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-6.70 + 14.5i)T \)
5 \( 1 \)
good3 \( 1 + 150.T + 6.56e3T^{2} \)
7 \( 1 + 2.62e3T + 5.76e6T^{2} \)
11 \( 1 + 2.30e3iT - 2.14e8T^{2} \)
13 \( 1 - 4.70e4iT - 8.15e8T^{2} \)
17 \( 1 - 5.19e4iT - 6.97e9T^{2} \)
19 \( 1 + 5.95e4iT - 1.69e10T^{2} \)
23 \( 1 - 7.75e4T + 7.83e10T^{2} \)
29 \( 1 + 9.02e5T + 5.00e11T^{2} \)
31 \( 1 + 3.40e5iT - 8.52e11T^{2} \)
37 \( 1 - 5.84e5iT - 3.51e12T^{2} \)
41 \( 1 - 2.93e5T + 7.98e12T^{2} \)
43 \( 1 + 2.95e6T + 1.16e13T^{2} \)
47 \( 1 + 5.03e6T + 2.38e13T^{2} \)
53 \( 1 + 7.54e6iT - 6.22e13T^{2} \)
59 \( 1 - 8.82e6iT - 1.46e14T^{2} \)
61 \( 1 - 1.08e7T + 1.91e14T^{2} \)
67 \( 1 + 1.44e7T + 4.06e14T^{2} \)
71 \( 1 - 3.71e6iT - 6.45e14T^{2} \)
73 \( 1 + 3.62e7iT - 8.06e14T^{2} \)
79 \( 1 - 4.88e7iT - 1.51e15T^{2} \)
83 \( 1 - 6.93e7T + 2.25e15T^{2} \)
89 \( 1 - 1.05e8T + 3.93e15T^{2} \)
97 \( 1 + 1.33e8iT - 7.83e15T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.75788741268828623183750511108, −11.19028895482060893797519872069, −10.12001383260698663706553392750, −9.272194036103235228233226055888, −6.78104056407577673898356406390, −6.07522312683394451066584450053, −4.87872035581509189744869700717, −3.76836423431151840417358888855, −1.71472558138084571142650636965, −0.30882368574640869742303059098, 0.56738732320194805404299429786, 3.46672043285477327331271125085, 4.99354904928802952634128260297, 5.77469793319882075316158171833, 6.64245118905479211958773372391, 7.65776789719990352657613335251, 9.535059328885756393373274273094, 10.51004149776319969822014935816, 11.80838122105402836413293354697, 12.75051674991670215953441038473

Graph of the $Z$-function along the critical line