Properties

Label 2-10e2-100.11-c8-0-28
Degree $2$
Conductor $100$
Sign $-0.984 - 0.177i$
Analytic cond. $40.7378$
Root an. cond. $6.38262$
Motivic weight $8$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (3.57 + 15.5i)2-s + (101. + 32.9i)3-s + (−230. + 111. i)4-s + (−155. − 605. i)5-s + (−151. + 1.70e3i)6-s + 328. i·7-s + (−2.56e3 − 3.19e3i)8-s + (3.90e3 + 2.83e3i)9-s + (8.88e3 − 4.58e3i)10-s + (1.27e4 + 1.76e4i)11-s + (−2.70e4 + 3.70e3i)12-s + (9.47e3 + 6.88e3i)13-s + (−5.11e3 + 1.17e3i)14-s + (4.21e3 − 6.65e4i)15-s + (4.07e4 − 5.13e4i)16-s + (4.21e4 + 1.29e5i)17-s + ⋯
L(s)  = 1  + (0.223 + 0.974i)2-s + (1.25 + 0.407i)3-s + (−0.900 + 0.435i)4-s + (−0.248 − 0.968i)5-s + (−0.117 + 1.31i)6-s + 0.136i·7-s + (−0.625 − 0.780i)8-s + (0.594 + 0.432i)9-s + (0.888 − 0.458i)10-s + (0.873 + 1.20i)11-s + (−1.30 + 0.178i)12-s + (0.331 + 0.241i)13-s + (−0.133 + 0.0305i)14-s + (0.0833 − 1.31i)15-s + (0.621 − 0.783i)16-s + (0.505 + 1.55i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 100 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.984 - 0.177i)\, \overline{\Lambda}(9-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 100 ^{s/2} \, \Gamma_{\C}(s+4) \, L(s)\cr =\mathstrut & (-0.984 - 0.177i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(100\)    =    \(2^{2} \cdot 5^{2}\)
Sign: $-0.984 - 0.177i$
Analytic conductor: \(40.7378\)
Root analytic conductor: \(6.38262\)
Motivic weight: \(8\)
Rational: no
Arithmetic: yes
Character: $\chi_{100} (11, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 100,\ (\ :4),\ -0.984 - 0.177i)\)

Particular Values

\(L(\frac{9}{2})\) \(\approx\) \(0.211606 + 2.35896i\)
\(L(\frac12)\) \(\approx\) \(0.211606 + 2.35896i\)
\(L(5)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-3.57 - 15.5i)T \)
5 \( 1 + (155. + 605. i)T \)
good3 \( 1 + (-101. - 32.9i)T + (5.30e3 + 3.85e3i)T^{2} \)
7 \( 1 - 328. iT - 5.76e6T^{2} \)
11 \( 1 + (-1.27e4 - 1.76e4i)T + (-6.62e7 + 2.03e8i)T^{2} \)
13 \( 1 + (-9.47e3 - 6.88e3i)T + (2.52e8 + 7.75e8i)T^{2} \)
17 \( 1 + (-4.21e4 - 1.29e5i)T + (-5.64e9 + 4.10e9i)T^{2} \)
19 \( 1 + (2.06e5 - 6.70e4i)T + (1.37e10 - 9.98e9i)T^{2} \)
23 \( 1 + (5.89e4 + 8.11e4i)T + (-2.41e10 + 7.44e10i)T^{2} \)
29 \( 1 + (2.23e5 - 6.88e5i)T + (-4.04e11 - 2.94e11i)T^{2} \)
31 \( 1 + (1.21e6 - 3.94e5i)T + (6.90e11 - 5.01e11i)T^{2} \)
37 \( 1 + (-2.11e6 - 1.53e6i)T + (1.08e12 + 3.34e12i)T^{2} \)
41 \( 1 + (2.18e6 + 1.58e6i)T + (2.46e12 + 7.59e12i)T^{2} \)
43 \( 1 + 2.64e6iT - 1.16e13T^{2} \)
47 \( 1 + (-7.13e6 - 2.31e6i)T + (1.92e13 + 1.39e13i)T^{2} \)
53 \( 1 + (3.85e5 - 1.18e6i)T + (-5.03e13 - 3.65e13i)T^{2} \)
59 \( 1 + (9.85e6 - 1.35e7i)T + (-4.53e13 - 1.39e14i)T^{2} \)
61 \( 1 + (-1.86e6 + 1.35e6i)T + (5.92e13 - 1.82e14i)T^{2} \)
67 \( 1 + (1.86e7 - 6.05e6i)T + (3.28e14 - 2.38e14i)T^{2} \)
71 \( 1 + (-2.63e7 - 8.55e6i)T + (5.22e14 + 3.79e14i)T^{2} \)
73 \( 1 + (1.22e6 - 8.91e5i)T + (2.49e14 - 7.66e14i)T^{2} \)
79 \( 1 + (4.74e7 + 1.54e7i)T + (1.22e15 + 8.91e14i)T^{2} \)
83 \( 1 + (1.65e7 - 5.38e6i)T + (1.82e15 - 1.32e15i)T^{2} \)
89 \( 1 + (5.43e7 - 3.94e7i)T + (1.21e15 - 3.74e15i)T^{2} \)
97 \( 1 + (-3.67e7 + 1.13e8i)T + (-6.34e15 - 4.60e15i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.85587630022211812434284359801, −12.31326968558695353562897197547, −10.13739563559091931475109252564, −8.897005581328295674342927441158, −8.637821766116122366646287256596, −7.43402283127860453035427367625, −5.95695771208247228199432737968, −4.33015205650907030262540244805, −3.80457281504006381750435771876, −1.70707706873748243840638574767, 0.51820360860157611681448483021, 2.16300654714318978331602315876, 3.10163058726333426430677067700, 3.97040235374377083740123729444, 6.02742161906900527346905156005, 7.53408110400367392603117096792, 8.664502600391873183588807452030, 9.539090674729521084852950108086, 10.93196146989429965597734064139, 11.58768331696639633110683876496

Graph of the $Z$-function along the critical line