Properties

Label 2-10944-1.1-c1-0-58
Degree $2$
Conductor $10944$
Sign $-1$
Analytic cond. $87.3882$
Root an. cond. $9.34816$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s − 3·7-s + 3·11-s + 6·13-s − 3·17-s − 19-s + 4·23-s − 4·25-s − 10·29-s − 2·31-s − 3·35-s − 8·37-s + 8·41-s − 43-s + 3·47-s + 2·49-s − 6·53-s + 3·55-s − 7·61-s + 6·65-s + 8·67-s + 12·71-s − 11·73-s − 9·77-s − 4·83-s − 3·85-s − 10·89-s + ⋯
L(s)  = 1  + 0.447·5-s − 1.13·7-s + 0.904·11-s + 1.66·13-s − 0.727·17-s − 0.229·19-s + 0.834·23-s − 4/5·25-s − 1.85·29-s − 0.359·31-s − 0.507·35-s − 1.31·37-s + 1.24·41-s − 0.152·43-s + 0.437·47-s + 2/7·49-s − 0.824·53-s + 0.404·55-s − 0.896·61-s + 0.744·65-s + 0.977·67-s + 1.42·71-s − 1.28·73-s − 1.02·77-s − 0.439·83-s − 0.325·85-s − 1.05·89-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 10944 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 10944 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(10944\)    =    \(2^{6} \cdot 3^{2} \cdot 19\)
Sign: $-1$
Analytic conductor: \(87.3882\)
Root analytic conductor: \(9.34816\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 10944,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
19 \( 1 + T \)
good5 \( 1 - T + p T^{2} \)
7 \( 1 + 3 T + p T^{2} \)
11 \( 1 - 3 T + p T^{2} \)
13 \( 1 - 6 T + p T^{2} \)
17 \( 1 + 3 T + p T^{2} \)
23 \( 1 - 4 T + p T^{2} \)
29 \( 1 + 10 T + p T^{2} \)
31 \( 1 + 2 T + p T^{2} \)
37 \( 1 + 8 T + p T^{2} \)
41 \( 1 - 8 T + p T^{2} \)
43 \( 1 + T + p T^{2} \)
47 \( 1 - 3 T + p T^{2} \)
53 \( 1 + 6 T + p T^{2} \)
59 \( 1 + p T^{2} \)
61 \( 1 + 7 T + p T^{2} \)
67 \( 1 - 8 T + p T^{2} \)
71 \( 1 - 12 T + p T^{2} \)
73 \( 1 + 11 T + p T^{2} \)
79 \( 1 + p T^{2} \)
83 \( 1 + 4 T + p T^{2} \)
89 \( 1 + 10 T + p T^{2} \)
97 \( 1 + 2 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.81887350203953, −16.18180407078120, −15.69769146875137, −15.22877781182094, −14.44533350536324, −13.81724510311056, −13.33926301942935, −12.89769677467479, −12.36199706404542, −11.40510641695561, −11.05769589983429, −10.47064103034283, −9.491841424759626, −9.297791790124632, −8.748240991447002, −7.937722605290241, −6.964972819076286, −6.611738286011658, −5.914911053835027, −5.504292221833288, −4.257775732469895, −3.738231292327022, −3.139452097998629, −2.035993201395619, −1.279511364527950, 0, 1.279511364527950, 2.035993201395619, 3.139452097998629, 3.738231292327022, 4.257775732469895, 5.504292221833288, 5.914911053835027, 6.611738286011658, 6.964972819076286, 7.937722605290241, 8.748240991447002, 9.297791790124632, 9.491841424759626, 10.47064103034283, 11.05769589983429, 11.40510641695561, 12.36199706404542, 12.89769677467479, 13.33926301942935, 13.81724510311056, 14.44533350536324, 15.22877781182094, 15.69769146875137, 16.18180407078120, 16.81887350203953

Graph of the $Z$-function along the critical line