Properties

Label 2-1088-1.1-c3-0-21
Degree $2$
Conductor $1088$
Sign $1$
Analytic cond. $64.1940$
Root an. cond. $8.01212$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 8.47·3-s − 0.885·5-s + 3.81·7-s + 44.8·9-s + 52.3·11-s + 8.06·13-s + 7.50·15-s − 17·17-s + 66.5·19-s − 32.3·21-s + 180.·23-s − 124.·25-s − 151.·27-s + 41.2·29-s − 34.9·31-s − 443.·33-s − 3.38·35-s − 130.·37-s − 68.3·39-s − 17.9·41-s − 277.·43-s − 39.7·45-s + 463.·47-s − 328.·49-s + 144.·51-s + 329.·53-s − 46.3·55-s + ⋯
L(s)  = 1  − 1.63·3-s − 0.0792·5-s + 0.206·7-s + 1.66·9-s + 1.43·11-s + 0.171·13-s + 0.129·15-s − 0.242·17-s + 0.803·19-s − 0.336·21-s + 1.63·23-s − 0.993·25-s − 1.07·27-s + 0.264·29-s − 0.202·31-s − 2.34·33-s − 0.0163·35-s − 0.579·37-s − 0.280·39-s − 0.0682·41-s − 0.984·43-s − 0.131·45-s + 1.43·47-s − 0.957·49-s + 0.395·51-s + 0.855·53-s − 0.113·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1088 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1088 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1088\)    =    \(2^{6} \cdot 17\)
Sign: $1$
Analytic conductor: \(64.1940\)
Root analytic conductor: \(8.01212\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1088,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.264228082\)
\(L(\frac12)\) \(\approx\) \(1.264228082\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
17 \( 1 + 17T \)
good3 \( 1 + 8.47T + 27T^{2} \)
5 \( 1 + 0.885T + 125T^{2} \)
7 \( 1 - 3.81T + 343T^{2} \)
11 \( 1 - 52.3T + 1.33e3T^{2} \)
13 \( 1 - 8.06T + 2.19e3T^{2} \)
19 \( 1 - 66.5T + 6.85e3T^{2} \)
23 \( 1 - 180.T + 1.21e4T^{2} \)
29 \( 1 - 41.2T + 2.43e4T^{2} \)
31 \( 1 + 34.9T + 2.97e4T^{2} \)
37 \( 1 + 130.T + 5.06e4T^{2} \)
41 \( 1 + 17.9T + 6.89e4T^{2} \)
43 \( 1 + 277.T + 7.95e4T^{2} \)
47 \( 1 - 463.T + 1.03e5T^{2} \)
53 \( 1 - 329.T + 1.48e5T^{2} \)
59 \( 1 + 678.T + 2.05e5T^{2} \)
61 \( 1 + 340.T + 2.26e5T^{2} \)
67 \( 1 + 15.3T + 3.00e5T^{2} \)
71 \( 1 + 670.T + 3.57e5T^{2} \)
73 \( 1 - 193.T + 3.89e5T^{2} \)
79 \( 1 - 1.08e3T + 4.93e5T^{2} \)
83 \( 1 - 865.T + 5.71e5T^{2} \)
89 \( 1 - 1.12e3T + 7.04e5T^{2} \)
97 \( 1 + 379.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.550369358949529165313169612834, −8.860763224216345991588847807486, −7.53885190871428666101978923757, −6.76845985555007857538859681157, −6.12825701165052780300389092742, −5.23857207579598306417317072504, −4.49149851720565784471136599932, −3.43324817264520527889012234080, −1.58938657081658040907430689562, −0.69095323512817236457415030341, 0.69095323512817236457415030341, 1.58938657081658040907430689562, 3.43324817264520527889012234080, 4.49149851720565784471136599932, 5.23857207579598306417317072504, 6.12825701165052780300389092742, 6.76845985555007857538859681157, 7.53885190871428666101978923757, 8.860763224216345991588847807486, 9.550369358949529165313169612834

Graph of the $Z$-function along the critical line