L(s) = 1 | + 6·2-s − 9·3-s + 4·4-s + 6·5-s − 54·6-s − 40·7-s − 168·8-s + 81·9-s + 36·10-s − 564·11-s − 36·12-s − 638·13-s − 240·14-s − 54·15-s − 1.13e3·16-s + 882·17-s + 486·18-s + 24·20-s + 360·21-s − 3.38e3·22-s − 840·23-s + 1.51e3·24-s − 3.08e3·25-s − 3.82e3·26-s − 729·27-s − 160·28-s − 4.63e3·29-s + ⋯ |
L(s) = 1 | + 1.06·2-s − 0.577·3-s + 1/8·4-s + 0.107·5-s − 0.612·6-s − 0.308·7-s − 0.928·8-s + 1/3·9-s + 0.113·10-s − 1.40·11-s − 0.0721·12-s − 1.04·13-s − 0.327·14-s − 0.0619·15-s − 1.10·16-s + 0.740·17-s + 0.353·18-s + 0.0134·20-s + 0.178·21-s − 1.49·22-s − 0.331·23-s + 0.535·24-s − 0.988·25-s − 1.11·26-s − 0.192·27-s − 0.0385·28-s − 1.02·29-s + ⋯ |
Λ(s)=(=(1083s/2ΓC(s)L(s)Λ(6−s)
Λ(s)=(=(1083s/2ΓC(s+5/2)L(s)Λ(1−s)
Particular Values
L(3) |
≈ |
0.8028987812 |
L(21) |
≈ |
0.8028987812 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+p2T |
| 19 | 1 |
good | 2 | 1−3pT+p5T2 |
| 5 | 1−6T+p5T2 |
| 7 | 1+40T+p5T2 |
| 11 | 1+564T+p5T2 |
| 13 | 1+638T+p5T2 |
| 17 | 1−882T+p5T2 |
| 23 | 1+840T+p5T2 |
| 29 | 1+4638T+p5T2 |
| 31 | 1+4400T+p5T2 |
| 37 | 1−2410T+p5T2 |
| 41 | 1−6870T+p5T2 |
| 43 | 1−9644T+p5T2 |
| 47 | 1+18672T+p5T2 |
| 53 | 1+33750T+p5T2 |
| 59 | 1−18084T+p5T2 |
| 61 | 1−39758T+p5T2 |
| 67 | 1−23068T+p5T2 |
| 71 | 1−4248T+p5T2 |
| 73 | 1+41110T+p5T2 |
| 79 | 1+21920T+p5T2 |
| 83 | 1−82452T+p5T2 |
| 89 | 1−94086T+p5T2 |
| 97 | 1+49442T+p5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.496836595909973790585042390430, −8.080345409244966479626722466801, −7.38917060485400188180780658399, −6.27266724183700216894881470675, −5.48241881589994775127136969577, −5.05460062120767708136580067217, −4.02609871485109633885335604064, −3.06423705626129388363328242660, −2.07827300670332858444113879625, −0.31498196263593192206757309694,
0.31498196263593192206757309694, 2.07827300670332858444113879625, 3.06423705626129388363328242660, 4.02609871485109633885335604064, 5.05460062120767708136580067217, 5.48241881589994775127136969577, 6.27266724183700216894881470675, 7.38917060485400188180780658399, 8.080345409244966479626722466801, 9.496836595909973790585042390430