L(s) = 1 | − 11·2-s − 9·3-s + 89·4-s + 6·5-s + 99·6-s − 176·7-s − 627·8-s + 81·9-s − 66·10-s − 496·11-s − 801·12-s + 178·13-s + 1.93e3·14-s − 54·15-s + 4.04e3·16-s + 202·17-s − 891·18-s + 534·20-s + 1.58e3·21-s + 5.45e3·22-s + 4.39e3·23-s + 5.64e3·24-s − 3.08e3·25-s − 1.95e3·26-s − 729·27-s − 1.56e4·28-s + 5.90e3·29-s + ⋯ |
L(s) = 1 | − 1.94·2-s − 0.577·3-s + 2.78·4-s + 0.107·5-s + 1.12·6-s − 1.35·7-s − 3.46·8-s + 1/3·9-s − 0.208·10-s − 1.23·11-s − 1.60·12-s + 0.292·13-s + 2.63·14-s − 0.0619·15-s + 3.95·16-s + 0.169·17-s − 0.648·18-s + 0.298·20-s + 0.783·21-s + 2.40·22-s + 1.73·23-s + 1.99·24-s − 0.988·25-s − 0.568·26-s − 0.192·27-s − 3.77·28-s + 1.30·29-s + ⋯ |
Λ(s)=(=(1083s/2ΓC(s)L(s)Λ(6−s)
Λ(s)=(=(1083s/2ΓC(s+5/2)L(s)Λ(1−s)
Particular Values
L(3) |
≈ |
0.1915638284 |
L(21) |
≈ |
0.1915638284 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+p2T |
| 19 | 1 |
good | 2 | 1+11T+p5T2 |
| 5 | 1−6T+p5T2 |
| 7 | 1+176T+p5T2 |
| 11 | 1+496T+p5T2 |
| 13 | 1−178T+p5T2 |
| 17 | 1−202T+p5T2 |
| 23 | 1−4396T+p5T2 |
| 29 | 1−5902T+p5T2 |
| 31 | 1+5760T+p5T2 |
| 37 | 1−3906T+p5T2 |
| 41 | 1+15774T+p5T2 |
| 43 | 1+7492T+p5T2 |
| 47 | 1+7452T+p5T2 |
| 53 | 1−29014T+p5T2 |
| 59 | 1+13604T+p5T2 |
| 61 | 1+12466T+p5T2 |
| 67 | 1+43436T+p5T2 |
| 71 | 1+28800T+p5T2 |
| 73 | 1−80746T+p5T2 |
| 79 | 1+76456T+p5T2 |
| 83 | 1+56880T+p5T2 |
| 89 | 1−103266T+p5T2 |
| 97 | 1+82490T+p5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.230837949553101819544264054126, −8.479332976153336234821789124284, −7.53777529137282696099431555355, −6.85642139949342265882593230155, −6.18159206849484436597535026360, −5.28557373129483663195806586323, −3.33458507810404999349395751418, −2.58319887526859354826789805826, −1.32778140209485255123253892036, −0.27555143314703734825203014013,
0.27555143314703734825203014013, 1.32778140209485255123253892036, 2.58319887526859354826789805826, 3.33458507810404999349395751418, 5.28557373129483663195806586323, 6.18159206849484436597535026360, 6.85642139949342265882593230155, 7.53777529137282696099431555355, 8.479332976153336234821789124284, 9.230837949553101819544264054126