Properties

Label 2-1083-1.1-c5-0-22
Degree $2$
Conductor $1083$
Sign $1$
Analytic cond. $173.695$
Root an. cond. $13.1793$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 11·2-s − 9·3-s + 89·4-s + 6·5-s + 99·6-s − 176·7-s − 627·8-s + 81·9-s − 66·10-s − 496·11-s − 801·12-s + 178·13-s + 1.93e3·14-s − 54·15-s + 4.04e3·16-s + 202·17-s − 891·18-s + 534·20-s + 1.58e3·21-s + 5.45e3·22-s + 4.39e3·23-s + 5.64e3·24-s − 3.08e3·25-s − 1.95e3·26-s − 729·27-s − 1.56e4·28-s + 5.90e3·29-s + ⋯
L(s)  = 1  − 1.94·2-s − 0.577·3-s + 2.78·4-s + 0.107·5-s + 1.12·6-s − 1.35·7-s − 3.46·8-s + 1/3·9-s − 0.208·10-s − 1.23·11-s − 1.60·12-s + 0.292·13-s + 2.63·14-s − 0.0619·15-s + 3.95·16-s + 0.169·17-s − 0.648·18-s + 0.298·20-s + 0.783·21-s + 2.40·22-s + 1.73·23-s + 1.99·24-s − 0.988·25-s − 0.568·26-s − 0.192·27-s − 3.77·28-s + 1.30·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1083 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1083 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1083\)    =    \(3 \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(173.695\)
Root analytic conductor: \(13.1793\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1083,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(0.1915638284\)
\(L(\frac12)\) \(\approx\) \(0.1915638284\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + p^{2} T \)
19 \( 1 \)
good2 \( 1 + 11 T + p^{5} T^{2} \)
5 \( 1 - 6 T + p^{5} T^{2} \)
7 \( 1 + 176 T + p^{5} T^{2} \)
11 \( 1 + 496 T + p^{5} T^{2} \)
13 \( 1 - 178 T + p^{5} T^{2} \)
17 \( 1 - 202 T + p^{5} T^{2} \)
23 \( 1 - 4396 T + p^{5} T^{2} \)
29 \( 1 - 5902 T + p^{5} T^{2} \)
31 \( 1 + 5760 T + p^{5} T^{2} \)
37 \( 1 - 3906 T + p^{5} T^{2} \)
41 \( 1 + 15774 T + p^{5} T^{2} \)
43 \( 1 + 7492 T + p^{5} T^{2} \)
47 \( 1 + 7452 T + p^{5} T^{2} \)
53 \( 1 - 29014 T + p^{5} T^{2} \)
59 \( 1 + 13604 T + p^{5} T^{2} \)
61 \( 1 + 12466 T + p^{5} T^{2} \)
67 \( 1 + 43436 T + p^{5} T^{2} \)
71 \( 1 + 28800 T + p^{5} T^{2} \)
73 \( 1 - 80746 T + p^{5} T^{2} \)
79 \( 1 + 76456 T + p^{5} T^{2} \)
83 \( 1 + 56880 T + p^{5} T^{2} \)
89 \( 1 - 103266 T + p^{5} T^{2} \)
97 \( 1 + 82490 T + p^{5} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.230837949553101819544264054126, −8.479332976153336234821789124284, −7.53777529137282696099431555355, −6.85642139949342265882593230155, −6.18159206849484436597535026360, −5.28557373129483663195806586323, −3.33458507810404999349395751418, −2.58319887526859354826789805826, −1.32778140209485255123253892036, −0.27555143314703734825203014013, 0.27555143314703734825203014013, 1.32778140209485255123253892036, 2.58319887526859354826789805826, 3.33458507810404999349395751418, 5.28557373129483663195806586323, 6.18159206849484436597535026360, 6.85642139949342265882593230155, 7.53777529137282696099431555355, 8.479332976153336234821789124284, 9.230837949553101819544264054126

Graph of the $Z$-function along the critical line