Properties

Label 2-1083-1.1-c3-0-73
Degree $2$
Conductor $1083$
Sign $-1$
Analytic cond. $63.8990$
Root an. cond. $7.99368$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3·3-s − 7·4-s − 12·5-s − 3·6-s − 20·7-s − 15·8-s + 9·9-s − 12·10-s − 4·11-s + 21·12-s + 76·13-s − 20·14-s + 36·15-s + 41·16-s + 22·17-s + 9·18-s + 84·20-s + 60·21-s − 4·22-s + 82·23-s + 45·24-s + 19·25-s + 76·26-s − 27·27-s + 140·28-s − 242·29-s + ⋯
L(s)  = 1  + 0.353·2-s − 0.577·3-s − 7/8·4-s − 1.07·5-s − 0.204·6-s − 1.07·7-s − 0.662·8-s + 1/3·9-s − 0.379·10-s − 0.109·11-s + 0.505·12-s + 1.62·13-s − 0.381·14-s + 0.619·15-s + 0.640·16-s + 0.313·17-s + 0.117·18-s + 0.939·20-s + 0.623·21-s − 0.0387·22-s + 0.743·23-s + 0.382·24-s + 0.151·25-s + 0.573·26-s − 0.192·27-s + 0.944·28-s − 1.54·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1083 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1083 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1083\)    =    \(3 \cdot 19^{2}\)
Sign: $-1$
Analytic conductor: \(63.8990\)
Root analytic conductor: \(7.99368\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1083,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + p T \)
19 \( 1 \)
good2 \( 1 - T + p^{3} T^{2} \)
5 \( 1 + 12 T + p^{3} T^{2} \)
7 \( 1 + 20 T + p^{3} T^{2} \)
11 \( 1 + 4 T + p^{3} T^{2} \)
13 \( 1 - 76 T + p^{3} T^{2} \)
17 \( 1 - 22 T + p^{3} T^{2} \)
23 \( 1 - 82 T + p^{3} T^{2} \)
29 \( 1 + 242 T + p^{3} T^{2} \)
31 \( 1 - 126 T + p^{3} T^{2} \)
37 \( 1 - 180 T + p^{3} T^{2} \)
41 \( 1 - 390 T + p^{3} T^{2} \)
43 \( 1 - 308 T + p^{3} T^{2} \)
47 \( 1 + 522 T + p^{3} T^{2} \)
53 \( 1 - 70 T + p^{3} T^{2} \)
59 \( 1 + 188 T + p^{3} T^{2} \)
61 \( 1 + 706 T + p^{3} T^{2} \)
67 \( 1 + 104 T + p^{3} T^{2} \)
71 \( 1 - 432 T + p^{3} T^{2} \)
73 \( 1 - 718 T + p^{3} T^{2} \)
79 \( 1 + 94 T + p^{3} T^{2} \)
83 \( 1 + 1296 T + p^{3} T^{2} \)
89 \( 1 + 846 T + p^{3} T^{2} \)
97 \( 1 + 830 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.160271589402270976408109520017, −8.249962788334443005741485354870, −7.44081481822011889091134399463, −6.26919706364655544176094888769, −5.75525767772265521607407717880, −4.54961899759875406004252006029, −3.80244219032152589562823617417, −3.16252768986189697423571496283, −0.972523399241738064682902762509, 0, 0.972523399241738064682902762509, 3.16252768986189697423571496283, 3.80244219032152589562823617417, 4.54961899759875406004252006029, 5.75525767772265521607407717880, 6.26919706364655544176094888769, 7.44081481822011889091134399463, 8.249962788334443005741485354870, 9.160271589402270976408109520017

Graph of the $Z$-function along the critical line