Properties

Label 2-1083-1.1-c1-0-46
Degree 22
Conductor 10831083
Sign 1-1
Analytic cond. 8.647798.64779
Root an. cond. 2.940712.94071
Motivic weight 11
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank 11

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3-s − 4-s − 6-s + 7-s − 3·8-s + 9-s − 2·11-s + 12-s + 5·13-s + 14-s − 16-s − 4·17-s + 18-s − 21-s − 2·22-s − 4·23-s + 3·24-s − 5·25-s + 5·26-s − 27-s − 28-s − 8·29-s − 3·31-s + 5·32-s + 2·33-s − 4·34-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s − 1/2·4-s − 0.408·6-s + 0.377·7-s − 1.06·8-s + 1/3·9-s − 0.603·11-s + 0.288·12-s + 1.38·13-s + 0.267·14-s − 1/4·16-s − 0.970·17-s + 0.235·18-s − 0.218·21-s − 0.426·22-s − 0.834·23-s + 0.612·24-s − 25-s + 0.980·26-s − 0.192·27-s − 0.188·28-s − 1.48·29-s − 0.538·31-s + 0.883·32-s + 0.348·33-s − 0.685·34-s + ⋯

Functional equation

Λ(s)=(1083s/2ΓC(s)L(s)=(Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 1083 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}
Λ(s)=(1083s/2ΓC(s+1/2)L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 1083 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 10831083    =    31923 \cdot 19^{2}
Sign: 1-1
Analytic conductor: 8.647798.64779
Root analytic conductor: 2.940712.94071
Motivic weight: 11
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: 11
Selberg data: (2, 1083, ( :1/2), 1)(2,\ 1083,\ (\ :1/2),\ -1)

Particular Values

L(1)L(1) == 00
L(12)L(\frac12) == 00
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad3 1+T 1 + T
19 1 1
good2 1T+pT2 1 - T + p T^{2}
5 1+pT2 1 + p T^{2}
7 1T+pT2 1 - T + p T^{2}
11 1+2T+pT2 1 + 2 T + p T^{2}
13 15T+pT2 1 - 5 T + p T^{2}
17 1+4T+pT2 1 + 4 T + p T^{2}
23 1+4T+pT2 1 + 4 T + p T^{2}
29 1+8T+pT2 1 + 8 T + p T^{2}
31 1+3T+pT2 1 + 3 T + p T^{2}
37 13T+pT2 1 - 3 T + p T^{2}
41 1+12T+pT2 1 + 12 T + p T^{2}
43 1+T+pT2 1 + T + p T^{2}
47 1+6T+pT2 1 + 6 T + p T^{2}
53 14T+pT2 1 - 4 T + p T^{2}
59 110T+pT2 1 - 10 T + p T^{2}
61 1+13T+pT2 1 + 13 T + p T^{2}
67 111T+pT2 1 - 11 T + p T^{2}
71 16T+pT2 1 - 6 T + p T^{2}
73 1+11T+pT2 1 + 11 T + p T^{2}
79 1T+pT2 1 - T + p T^{2}
83 1+pT2 1 + p T^{2}
89 1+6T+pT2 1 + 6 T + p T^{2}
97 12T+pT2 1 - 2 T + p T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−9.490859406317181910865214053483, −8.595490268432358233091447782559, −7.88766191356537491665576331142, −6.62079287213053781803056519115, −5.84047896161452237997455144358, −5.18046014163099724265079503817, −4.20637327455860491087854991343, −3.48638822023419989452758004968, −1.86277933111965985175848882827, 0, 1.86277933111965985175848882827, 3.48638822023419989452758004968, 4.20637327455860491087854991343, 5.18046014163099724265079503817, 5.84047896161452237997455144358, 6.62079287213053781803056519115, 7.88766191356537491665576331142, 8.595490268432358233091447782559, 9.490859406317181910865214053483

Graph of the ZZ-function along the critical line