L(s) = 1 | + (−2.22 − 0.224i)5-s + i·7-s − 0.449·11-s − 3.89i·13-s + 4.89i·17-s + 5.89·19-s − 4.44i·23-s + (4.89 + i)25-s + 0.449·29-s + 6·31-s + (0.224 − 2.22i)35-s + 0.101i·37-s + 9.34·41-s + 6i·43-s − 4.89i·47-s + ⋯ |
L(s) = 1 | + (−0.994 − 0.100i)5-s + 0.377i·7-s − 0.135·11-s − 1.08i·13-s + 1.18i·17-s + 1.35·19-s − 0.927i·23-s + (0.979 + 0.200i)25-s + 0.0834·29-s + 1.07·31-s + (0.0379 − 0.376i)35-s + 0.0166i·37-s + 1.45·41-s + 0.914i·43-s − 0.714i·47-s + ⋯ |
Λ(s)=(=(1080s/2ΓC(s)L(s)(0.994+0.100i)Λ(2−s)
Λ(s)=(=(1080s/2ΓC(s+1/2)L(s)(0.994+0.100i)Λ(1−s)
Degree: |
2 |
Conductor: |
1080
= 23⋅33⋅5
|
Sign: |
0.994+0.100i
|
Analytic conductor: |
8.62384 |
Root analytic conductor: |
2.93663 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1080(649,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1080, ( :1/2), 0.994+0.100i)
|
Particular Values
L(1) |
≈ |
1.318836284 |
L(21) |
≈ |
1.318836284 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1+(2.22+0.224i)T |
good | 7 | 1−iT−7T2 |
| 11 | 1+0.449T+11T2 |
| 13 | 1+3.89iT−13T2 |
| 17 | 1−4.89iT−17T2 |
| 19 | 1−5.89T+19T2 |
| 23 | 1+4.44iT−23T2 |
| 29 | 1−0.449T+29T2 |
| 31 | 1−6T+31T2 |
| 37 | 1−0.101iT−37T2 |
| 41 | 1−9.34T+41T2 |
| 43 | 1−6iT−43T2 |
| 47 | 1+4.89iT−47T2 |
| 53 | 1−4.44iT−53T2 |
| 59 | 1+4.89T+59T2 |
| 61 | 1−8.79T+61T2 |
| 67 | 1+14.7iT−67T2 |
| 71 | 1−11.5T+71T2 |
| 73 | 1−3.89iT−73T2 |
| 79 | 1−3.89T+79T2 |
| 83 | 1+7.55iT−83T2 |
| 89 | 1+12T+89T2 |
| 97 | 1−15.8iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.939764983358776603369532663247, −8.889457253960636705652971547551, −8.100066048369795637886686014650, −7.63672542566775209068636803105, −6.48701999791385397793303490252, −5.55751772577954270718501211801, −4.61215967172612307793336079584, −3.59073139995616428503221657645, −2.66163040182725667415818103655, −0.867057937735633417282932925047,
0.928965721584992972493163018449, 2.66933529378848110097223819157, 3.72285226185615309856788897395, 4.55732187720825359557970819878, 5.50581794631919615383208040384, 6.85116609336243496825050146052, 7.33030441075050857515636205375, 8.107239784601655893503006548854, 9.163407510001933213351483462551, 9.763403724311856000301787135332