L(s) = 1 | − 5-s + 2·7-s − 11-s + 13-s + 17-s + 4·19-s − 23-s + 25-s + 5·29-s + 31-s − 2·35-s + 6·37-s + 7·43-s − 7·47-s − 3·49-s + 12·53-s + 55-s + 4·59-s + 10·61-s − 65-s − 4·67-s − 12·71-s + 6·73-s − 2·77-s + 15·79-s − 2·83-s − 85-s + ⋯ |
L(s) = 1 | − 0.447·5-s + 0.755·7-s − 0.301·11-s + 0.277·13-s + 0.242·17-s + 0.917·19-s − 0.208·23-s + 1/5·25-s + 0.928·29-s + 0.179·31-s − 0.338·35-s + 0.986·37-s + 1.06·43-s − 1.02·47-s − 3/7·49-s + 1.64·53-s + 0.134·55-s + 0.520·59-s + 1.28·61-s − 0.124·65-s − 0.488·67-s − 1.42·71-s + 0.702·73-s − 0.227·77-s + 1.68·79-s − 0.219·83-s − 0.108·85-s + ⋯ |
Λ(s)=(=(1080s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(1080s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.655676292 |
L(21) |
≈ |
1.655676292 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1+T |
good | 7 | 1−2T+pT2 |
| 11 | 1+T+pT2 |
| 13 | 1−T+pT2 |
| 17 | 1−T+pT2 |
| 19 | 1−4T+pT2 |
| 23 | 1+T+pT2 |
| 29 | 1−5T+pT2 |
| 31 | 1−T+pT2 |
| 37 | 1−6T+pT2 |
| 41 | 1+pT2 |
| 43 | 1−7T+pT2 |
| 47 | 1+7T+pT2 |
| 53 | 1−12T+pT2 |
| 59 | 1−4T+pT2 |
| 61 | 1−10T+pT2 |
| 67 | 1+4T+pT2 |
| 71 | 1+12T+pT2 |
| 73 | 1−6T+pT2 |
| 79 | 1−15T+pT2 |
| 83 | 1+2T+pT2 |
| 89 | 1−12T+pT2 |
| 97 | 1−10T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.938016913173052801027619458454, −8.971544127814454878311880442588, −8.098215835619989410546011808466, −7.59623005890538420604075910258, −6.55466152525426843819318782499, −5.49385970565338845590944925790, −4.68426941255478221849145341689, −3.68561025556385408354635008380, −2.51888632026023556389235975025, −1.04466524673073804361911141068,
1.04466524673073804361911141068, 2.51888632026023556389235975025, 3.68561025556385408354635008380, 4.68426941255478221849145341689, 5.49385970565338845590944925790, 6.55466152525426843819318782499, 7.59623005890538420604075910258, 8.098215835619989410546011808466, 8.971544127814454878311880442588, 9.938016913173052801027619458454