Properties

Label 2-1080-1.1-c1-0-1
Degree 22
Conductor 10801080
Sign 11
Analytic cond. 8.623848.62384
Root an. cond. 2.936632.93663
Motivic weight 11
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s − 2·7-s − 6·13-s + 7·17-s + 7·19-s + 7·23-s + 25-s + 6·29-s + 3·31-s + 2·35-s − 6·37-s + 4·41-s + 8·43-s − 4·47-s − 3·49-s − 5·53-s + 6·59-s − 3·61-s + 6·65-s − 10·67-s + 12·71-s + 16·73-s + 79-s + 9·83-s − 7·85-s − 4·89-s + 12·91-s + ⋯
L(s)  = 1  − 0.447·5-s − 0.755·7-s − 1.66·13-s + 1.69·17-s + 1.60·19-s + 1.45·23-s + 1/5·25-s + 1.11·29-s + 0.538·31-s + 0.338·35-s − 0.986·37-s + 0.624·41-s + 1.21·43-s − 0.583·47-s − 3/7·49-s − 0.686·53-s + 0.781·59-s − 0.384·61-s + 0.744·65-s − 1.22·67-s + 1.42·71-s + 1.87·73-s + 0.112·79-s + 0.987·83-s − 0.759·85-s − 0.423·89-s + 1.25·91-s + ⋯

Functional equation

Λ(s)=(1080s/2ΓC(s)L(s)=(Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 1080 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}
Λ(s)=(1080s/2ΓC(s+1/2)L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 1080 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 10801080    =    233352^{3} \cdot 3^{3} \cdot 5
Sign: 11
Analytic conductor: 8.623848.62384
Root analytic conductor: 2.936632.93663
Motivic weight: 11
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: 00
Selberg data: (2, 1080, ( :1/2), 1)(2,\ 1080,\ (\ :1/2),\ 1)

Particular Values

L(1)L(1) \approx 1.3331340011.333134001
L(12)L(\frac12) \approx 1.3331340011.333134001
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
3 1 1
5 1+T 1 + T
good7 1+2T+pT2 1 + 2 T + p T^{2}
11 1+pT2 1 + p T^{2}
13 1+6T+pT2 1 + 6 T + p T^{2}
17 17T+pT2 1 - 7 T + p T^{2}
19 17T+pT2 1 - 7 T + p T^{2}
23 17T+pT2 1 - 7 T + p T^{2}
29 16T+pT2 1 - 6 T + p T^{2}
31 13T+pT2 1 - 3 T + p T^{2}
37 1+6T+pT2 1 + 6 T + p T^{2}
41 14T+pT2 1 - 4 T + p T^{2}
43 18T+pT2 1 - 8 T + p T^{2}
47 1+4T+pT2 1 + 4 T + p T^{2}
53 1+5T+pT2 1 + 5 T + p T^{2}
59 16T+pT2 1 - 6 T + p T^{2}
61 1+3T+pT2 1 + 3 T + p T^{2}
67 1+10T+pT2 1 + 10 T + p T^{2}
71 112T+pT2 1 - 12 T + p T^{2}
73 116T+pT2 1 - 16 T + p T^{2}
79 1T+pT2 1 - T + p T^{2}
83 19T+pT2 1 - 9 T + p T^{2}
89 1+4T+pT2 1 + 4 T + p T^{2}
97 1+16T+pT2 1 + 16 T + p T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−9.736209123827685165658772794366, −9.340594342400915042197038730100, −8.034492183108185243907943951295, −7.40943483489920513247550160368, −6.69463410827138464142550590856, −5.43769619653919967644195229195, −4.81166747900705263667735754004, −3.40036285362755303000488025192, −2.79691181265502448223684032950, −0.896211528698542772647210984543, 0.896211528698542772647210984543, 2.79691181265502448223684032950, 3.40036285362755303000488025192, 4.81166747900705263667735754004, 5.43769619653919967644195229195, 6.69463410827138464142550590856, 7.40943483489920513247550160368, 8.034492183108185243907943951295, 9.340594342400915042197038730100, 9.736209123827685165658772794366

Graph of the ZZ-function along the critical line