L(s) = 1 | − 5-s − 2·7-s − 6·13-s + 7·17-s + 7·19-s + 7·23-s + 25-s + 6·29-s + 3·31-s + 2·35-s − 6·37-s + 4·41-s + 8·43-s − 4·47-s − 3·49-s − 5·53-s + 6·59-s − 3·61-s + 6·65-s − 10·67-s + 12·71-s + 16·73-s + 79-s + 9·83-s − 7·85-s − 4·89-s + 12·91-s + ⋯ |
L(s) = 1 | − 0.447·5-s − 0.755·7-s − 1.66·13-s + 1.69·17-s + 1.60·19-s + 1.45·23-s + 1/5·25-s + 1.11·29-s + 0.538·31-s + 0.338·35-s − 0.986·37-s + 0.624·41-s + 1.21·43-s − 0.583·47-s − 3/7·49-s − 0.686·53-s + 0.781·59-s − 0.384·61-s + 0.744·65-s − 1.22·67-s + 1.42·71-s + 1.87·73-s + 0.112·79-s + 0.987·83-s − 0.759·85-s − 0.423·89-s + 1.25·91-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1080 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1080 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.333134001\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.333134001\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 + T \) |
good | 7 | \( 1 + 2 T + p T^{2} \) |
| 11 | \( 1 + p T^{2} \) |
| 13 | \( 1 + 6 T + p T^{2} \) |
| 17 | \( 1 - 7 T + p T^{2} \) |
| 19 | \( 1 - 7 T + p T^{2} \) |
| 23 | \( 1 - 7 T + p T^{2} \) |
| 29 | \( 1 - 6 T + p T^{2} \) |
| 31 | \( 1 - 3 T + p T^{2} \) |
| 37 | \( 1 + 6 T + p T^{2} \) |
| 41 | \( 1 - 4 T + p T^{2} \) |
| 43 | \( 1 - 8 T + p T^{2} \) |
| 47 | \( 1 + 4 T + p T^{2} \) |
| 53 | \( 1 + 5 T + p T^{2} \) |
| 59 | \( 1 - 6 T + p T^{2} \) |
| 61 | \( 1 + 3 T + p T^{2} \) |
| 67 | \( 1 + 10 T + p T^{2} \) |
| 71 | \( 1 - 12 T + p T^{2} \) |
| 73 | \( 1 - 16 T + p T^{2} \) |
| 79 | \( 1 - T + p T^{2} \) |
| 83 | \( 1 - 9 T + p T^{2} \) |
| 89 | \( 1 + 4 T + p T^{2} \) |
| 97 | \( 1 + 16 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.736209123827685165658772794366, −9.340594342400915042197038730100, −8.034492183108185243907943951295, −7.40943483489920513247550160368, −6.69463410827138464142550590856, −5.43769619653919967644195229195, −4.81166747900705263667735754004, −3.40036285362755303000488025192, −2.79691181265502448223684032950, −0.896211528698542772647210984543,
0.896211528698542772647210984543, 2.79691181265502448223684032950, 3.40036285362755303000488025192, 4.81166747900705263667735754004, 5.43769619653919967644195229195, 6.69463410827138464142550590856, 7.40943483489920513247550160368, 8.034492183108185243907943951295, 9.340594342400915042197038730100, 9.736209123827685165658772794366