L(s) = 1 | + (6.37 + 11.0i)5-s + (7.02 − 12.1i)7-s + (−21.2 + 36.8i)11-s + (36.2 + 62.7i)13-s + 59.6·17-s + 105.·19-s + (−0.112 − 0.195i)23-s + (−18.6 + 32.3i)25-s + (−112. + 195. i)29-s + (−100. − 174. i)31-s + 179.·35-s − 152.·37-s + (−244. − 424. i)41-s + (3.79 − 6.57i)43-s + (186. − 323. i)47-s + ⋯ |
L(s) = 1 | + (0.569 + 0.986i)5-s + (0.379 − 0.657i)7-s + (−0.583 + 1.01i)11-s + (0.772 + 1.33i)13-s + 0.850·17-s + 1.27·19-s + (−0.00102 − 0.00176i)23-s + (−0.149 + 0.258i)25-s + (−0.722 + 1.25i)29-s + (−0.582 − 1.00i)31-s + 0.864·35-s − 0.679·37-s + (−0.932 − 1.61i)41-s + (0.0134 − 0.0233i)43-s + (0.579 − 1.00i)47-s + ⋯ |
Λ(s)=(=(108s/2ΓC(s)L(s)(0.655−0.754i)Λ(4−s)
Λ(s)=(=(108s/2ΓC(s+3/2)L(s)(0.655−0.754i)Λ(1−s)
Degree: |
2 |
Conductor: |
108
= 22⋅33
|
Sign: |
0.655−0.754i
|
Analytic conductor: |
6.37220 |
Root analytic conductor: |
2.52432 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ108(73,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 108, ( :3/2), 0.655−0.754i)
|
Particular Values
L(2) |
≈ |
1.60495+0.731556i |
L(21) |
≈ |
1.60495+0.731556i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
good | 5 | 1+(−6.37−11.0i)T+(−62.5+108.i)T2 |
| 7 | 1+(−7.02+12.1i)T+(−171.5−297.i)T2 |
| 11 | 1+(21.2−36.8i)T+(−665.5−1.15e3i)T2 |
| 13 | 1+(−36.2−62.7i)T+(−1.09e3+1.90e3i)T2 |
| 17 | 1−59.6T+4.91e3T2 |
| 19 | 1−105.T+6.85e3T2 |
| 23 | 1+(0.112+0.195i)T+(−6.08e3+1.05e4i)T2 |
| 29 | 1+(112.−195.i)T+(−1.21e4−2.11e4i)T2 |
| 31 | 1+(100.+174.i)T+(−1.48e4+2.57e4i)T2 |
| 37 | 1+152.T+5.06e4T2 |
| 41 | 1+(244.+424.i)T+(−3.44e4+5.96e4i)T2 |
| 43 | 1+(−3.79+6.57i)T+(−3.97e4−6.88e4i)T2 |
| 47 | 1+(−186.+323.i)T+(−5.19e4−8.99e4i)T2 |
| 53 | 1−43.6T+1.48e5T2 |
| 59 | 1+(335.+581.i)T+(−1.02e5+1.77e5i)T2 |
| 61 | 1+(37.0−64.1i)T+(−1.13e5−1.96e5i)T2 |
| 67 | 1+(210.+364.i)T+(−1.50e5+2.60e5i)T2 |
| 71 | 1−730.T+3.57e5T2 |
| 73 | 1−473.T+3.89e5T2 |
| 79 | 1+(−264.+458.i)T+(−2.46e5−4.26e5i)T2 |
| 83 | 1+(−13.0+22.6i)T+(−2.85e5−4.95e5i)T2 |
| 89 | 1+415.T+7.04e5T2 |
| 97 | 1+(463.−803.i)T+(−4.56e5−7.90e5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.72088754083852358574208142592, −12.27317025320802554110111636331, −11.08986189468597051632275766481, −10.27227617643410162479026555347, −9.258011435687718671179992135486, −7.56331363203615970169740117166, −6.80310485693927456821688830641, −5.29664639856771086251717932999, −3.65371884616420700930501210720, −1.85921228953173603111288956228,
1.12322978972180077391822437651, 3.16690435528968200793987770574, 5.29545941711378763869726626505, 5.74365818668759514831955687625, 7.86887695385306704855140977479, 8.652897468187192026073441277333, 9.780917802161537685562290029172, 11.00006466291121156507867643897, 12.15359864213311094242685225230, 13.14153035229829597259143982924