Properties

Label 2-108-108.43-c2-0-5
Degree $2$
Conductor $108$
Sign $-0.776 - 0.629i$
Analytic cond. $2.94278$
Root an. cond. $1.71545$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.23 + 1.57i)2-s + (−1.38 + 2.66i)3-s + (−0.934 + 3.88i)4-s + (1.82 + 0.665i)5-s + (−5.89 + 1.12i)6-s + (0.628 + 0.110i)7-s + (−7.26 + 3.34i)8-s + (−5.18 − 7.35i)9-s + (1.21 + 3.69i)10-s + (1.29 + 3.56i)11-s + (−9.06 − 7.85i)12-s + (1.00 − 0.843i)13-s + (0.604 + 1.12i)14-s + (−4.29 + 3.95i)15-s + (−14.2 − 7.26i)16-s + (6.93 + 12.0i)17-s + ⋯
L(s)  = 1  + (0.619 + 0.785i)2-s + (−0.460 + 0.887i)3-s + (−0.233 + 0.972i)4-s + (0.365 + 0.133i)5-s + (−0.982 + 0.188i)6-s + (0.0898 + 0.0158i)7-s + (−0.908 + 0.418i)8-s + (−0.576 − 0.817i)9-s + (0.121 + 0.369i)10-s + (0.118 + 0.324i)11-s + (−0.755 − 0.654i)12-s + (0.0773 − 0.0648i)13-s + (0.0431 + 0.0803i)14-s + (−0.286 + 0.263i)15-s + (−0.890 − 0.454i)16-s + (0.407 + 0.706i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 108 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.776 - 0.629i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 108 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.776 - 0.629i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(108\)    =    \(2^{2} \cdot 3^{3}\)
Sign: $-0.776 - 0.629i$
Analytic conductor: \(2.94278\)
Root analytic conductor: \(1.71545\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{108} (43, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 108,\ (\ :1),\ -0.776 - 0.629i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.523070 + 1.47542i\)
\(L(\frac12)\) \(\approx\) \(0.523070 + 1.47542i\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-1.23 - 1.57i)T \)
3 \( 1 + (1.38 - 2.66i)T \)
good5 \( 1 + (-1.82 - 0.665i)T + (19.1 + 16.0i)T^{2} \)
7 \( 1 + (-0.628 - 0.110i)T + (46.0 + 16.7i)T^{2} \)
11 \( 1 + (-1.29 - 3.56i)T + (-92.6 + 77.7i)T^{2} \)
13 \( 1 + (-1.00 + 0.843i)T + (29.3 - 166. i)T^{2} \)
17 \( 1 + (-6.93 - 12.0i)T + (-144.5 + 250. i)T^{2} \)
19 \( 1 + (-11.8 - 6.84i)T + (180.5 + 312. i)T^{2} \)
23 \( 1 + (-37.6 + 6.63i)T + (497. - 180. i)T^{2} \)
29 \( 1 + (-33.6 - 28.2i)T + (146. + 828. i)T^{2} \)
31 \( 1 + (6.16 - 1.08i)T + (903. - 328. i)T^{2} \)
37 \( 1 + (16.9 + 29.4i)T + (-684.5 + 1.18e3i)T^{2} \)
41 \( 1 + (-17.2 + 14.5i)T + (291. - 1.65e3i)T^{2} \)
43 \( 1 + (-10.4 - 28.5i)T + (-1.41e3 + 1.18e3i)T^{2} \)
47 \( 1 + (52.0 + 9.18i)T + (2.07e3 + 755. i)T^{2} \)
53 \( 1 - 69.0T + 2.80e3T^{2} \)
59 \( 1 + (-30.6 + 84.2i)T + (-2.66e3 - 2.23e3i)T^{2} \)
61 \( 1 + (-0.993 + 5.63i)T + (-3.49e3 - 1.27e3i)T^{2} \)
67 \( 1 + (78.8 + 93.9i)T + (-779. + 4.42e3i)T^{2} \)
71 \( 1 + (88.3 - 51.0i)T + (2.52e3 - 4.36e3i)T^{2} \)
73 \( 1 + (-33.2 + 57.5i)T + (-2.66e3 - 4.61e3i)T^{2} \)
79 \( 1 + (66.1 - 78.8i)T + (-1.08e3 - 6.14e3i)T^{2} \)
83 \( 1 + (3.87 - 4.61i)T + (-1.19e3 - 6.78e3i)T^{2} \)
89 \( 1 + (36.5 - 63.2i)T + (-3.96e3 - 6.85e3i)T^{2} \)
97 \( 1 + (-123. + 45.0i)T + (7.20e3 - 6.04e3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.23367402329941581141707485574, −12.87939042616358347779211522676, −11.93833427835085822944069234392, −10.73434421868165863722758210559, −9.547395156205067864952742214817, −8.411289251325048100672372742172, −6.87628324571969449921339978958, −5.74559250882954806685296893147, −4.72044781074918598712121786941, −3.32700828714528020812600899052, 1.14388525540979582879873906976, 2.87950839743441530887476408353, 4.92969458757745523997517219155, 5.94205058547637334207324376680, 7.21556288753328155192874026485, 8.876441639525040719224398322116, 10.12738528891824064967183827384, 11.38473870771906522247538993131, 11.89888597393373198334065732390, 13.20592593655156390683877275138

Graph of the $Z$-function along the critical line