L(s) = 1 | + (−1.07 − 1.68i)2-s + (2.99 + 0.107i)3-s + (−1.69 + 3.62i)4-s + (−0.755 + 4.28i)5-s + (−3.03 − 5.17i)6-s + (6.44 + 7.67i)7-s + (7.93 − 1.04i)8-s + (8.97 + 0.645i)9-s + (8.03 − 3.32i)10-s + (−16.5 + 2.92i)11-s + (−5.46 + 10.6i)12-s + (7.70 − 2.80i)13-s + (6.02 − 19.1i)14-s + (−2.72 + 12.7i)15-s + (−10.2 − 12.2i)16-s + (13.2 − 22.9i)17-s + ⋯ |
L(s) = 1 | + (−0.537 − 0.843i)2-s + (0.999 + 0.0358i)3-s + (−0.422 + 0.906i)4-s + (−0.151 + 0.856i)5-s + (−0.506 − 0.862i)6-s + (0.920 + 1.09i)7-s + (0.991 − 0.130i)8-s + (0.997 + 0.0717i)9-s + (0.803 − 0.332i)10-s + (−1.50 + 0.265i)11-s + (−0.455 + 0.890i)12-s + (0.592 − 0.215i)13-s + (0.430 − 1.36i)14-s + (−0.181 + 0.850i)15-s + (−0.642 − 0.766i)16-s + (0.780 − 1.35i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 108 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.999 - 0.0374i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 108 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.999 - 0.0374i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(1.40379 + 0.0263046i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.40379 + 0.0263046i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.07 + 1.68i)T \) |
| 3 | \( 1 + (-2.99 - 0.107i)T \) |
good | 5 | \( 1 + (0.755 - 4.28i)T + (-23.4 - 8.55i)T^{2} \) |
| 7 | \( 1 + (-6.44 - 7.67i)T + (-8.50 + 48.2i)T^{2} \) |
| 11 | \( 1 + (16.5 - 2.92i)T + (113. - 41.3i)T^{2} \) |
| 13 | \( 1 + (-7.70 + 2.80i)T + (129. - 108. i)T^{2} \) |
| 17 | \( 1 + (-13.2 + 22.9i)T + (-144.5 - 250. i)T^{2} \) |
| 19 | \( 1 + (10.2 - 5.92i)T + (180.5 - 312. i)T^{2} \) |
| 23 | \( 1 + (-14.3 + 17.1i)T + (-91.8 - 520. i)T^{2} \) |
| 29 | \( 1 + (29.1 + 10.6i)T + (644. + 540. i)T^{2} \) |
| 31 | \( 1 + (12.9 - 15.4i)T + (-166. - 946. i)T^{2} \) |
| 37 | \( 1 + (-20.1 + 34.9i)T + (-684.5 - 1.18e3i)T^{2} \) |
| 41 | \( 1 + (34.1 - 12.4i)T + (1.28e3 - 1.08e3i)T^{2} \) |
| 43 | \( 1 + (25.3 - 4.46i)T + (1.73e3 - 632. i)T^{2} \) |
| 47 | \( 1 + (-12.9 - 15.4i)T + (-383. + 2.17e3i)T^{2} \) |
| 53 | \( 1 - 46.7T + 2.80e3T^{2} \) |
| 59 | \( 1 + (36.4 + 6.42i)T + (3.27e3 + 1.19e3i)T^{2} \) |
| 61 | \( 1 + (-48.7 + 40.9i)T + (646. - 3.66e3i)T^{2} \) |
| 67 | \( 1 + (25.9 + 71.3i)T + (-3.43e3 + 2.88e3i)T^{2} \) |
| 71 | \( 1 + (-17.4 - 10.0i)T + (2.52e3 + 4.36e3i)T^{2} \) |
| 73 | \( 1 + (50.2 + 87.0i)T + (-2.66e3 + 4.61e3i)T^{2} \) |
| 79 | \( 1 + (-29.7 + 81.8i)T + (-4.78e3 - 4.01e3i)T^{2} \) |
| 83 | \( 1 + (25.2 - 69.3i)T + (-5.27e3 - 4.42e3i)T^{2} \) |
| 89 | \( 1 + (37.6 + 65.1i)T + (-3.96e3 + 6.85e3i)T^{2} \) |
| 97 | \( 1 + (-12.6 - 71.5i)T + (-8.84e3 + 3.21e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.34008798680484106704951179670, −12.38742165837509185606297933553, −11.15626125910359477233429066169, −10.34860761338922249493313296468, −9.139129641607869154577275682829, −8.161831889376364420299544109942, −7.38586440377361617816325243036, −5.00692380236851033173178470541, −3.15790058006176745071726076032, −2.22786000635407601604661678810,
1.36432018207655545816495676382, 4.09800192771930087747627055487, 5.33252854787902580789152742140, 7.23764546025445204074670202693, 8.124168664372969269450255618973, 8.641195828665997133082495321068, 10.08723138529608615026875427923, 10.91823501788423225277364717278, 13.06090599466685445671292015083, 13.46761766035821176498092636983