Properties

Label 2-108-108.103-c2-0-23
Degree $2$
Conductor $108$
Sign $0.897 + 0.441i$
Analytic cond. $2.94278$
Root an. cond. $1.71545$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.97 − 0.332i)2-s + (−2.99 + 0.197i)3-s + (3.77 − 1.31i)4-s + (3.98 − 1.45i)5-s + (−5.83 + 1.38i)6-s + (2.54 − 0.448i)7-s + (7.01 − 3.84i)8-s + (8.92 − 1.18i)9-s + (7.37 − 4.18i)10-s + (0.818 − 2.24i)11-s + (−11.0 + 4.67i)12-s + (−3.62 − 3.04i)13-s + (4.87 − 1.73i)14-s + (−11.6 + 5.12i)15-s + (12.5 − 9.92i)16-s + (−8.77 + 15.2i)17-s + ⋯
L(s)  = 1  + (0.986 − 0.166i)2-s + (−0.997 + 0.0657i)3-s + (0.944 − 0.328i)4-s + (0.796 − 0.290i)5-s + (−0.972 + 0.230i)6-s + (0.363 − 0.0641i)7-s + (0.876 − 0.480i)8-s + (0.991 − 0.131i)9-s + (0.737 − 0.418i)10-s + (0.0744 − 0.204i)11-s + (−0.920 + 0.389i)12-s + (−0.279 − 0.234i)13-s + (0.347 − 0.123i)14-s + (−0.776 + 0.341i)15-s + (0.784 − 0.620i)16-s + (−0.516 + 0.894i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 108 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.897 + 0.441i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 108 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.897 + 0.441i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(108\)    =    \(2^{2} \cdot 3^{3}\)
Sign: $0.897 + 0.441i$
Analytic conductor: \(2.94278\)
Root analytic conductor: \(1.71545\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{108} (103, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 108,\ (\ :1),\ 0.897 + 0.441i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(2.00281 - 0.466046i\)
\(L(\frac12)\) \(\approx\) \(2.00281 - 0.466046i\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-1.97 + 0.332i)T \)
3 \( 1 + (2.99 - 0.197i)T \)
good5 \( 1 + (-3.98 + 1.45i)T + (19.1 - 16.0i)T^{2} \)
7 \( 1 + (-2.54 + 0.448i)T + (46.0 - 16.7i)T^{2} \)
11 \( 1 + (-0.818 + 2.24i)T + (-92.6 - 77.7i)T^{2} \)
13 \( 1 + (3.62 + 3.04i)T + (29.3 + 166. i)T^{2} \)
17 \( 1 + (8.77 - 15.2i)T + (-144.5 - 250. i)T^{2} \)
19 \( 1 + (13.3 - 7.72i)T + (180.5 - 312. i)T^{2} \)
23 \( 1 + (-13.3 - 2.35i)T + (497. + 180. i)T^{2} \)
29 \( 1 + (33.3 - 27.9i)T + (146. - 828. i)T^{2} \)
31 \( 1 + (46.8 + 8.25i)T + (903. + 328. i)T^{2} \)
37 \( 1 + (-23.0 + 39.8i)T + (-684.5 - 1.18e3i)T^{2} \)
41 \( 1 + (-59.1 - 49.5i)T + (291. + 1.65e3i)T^{2} \)
43 \( 1 + (-11.2 + 30.8i)T + (-1.41e3 - 1.18e3i)T^{2} \)
47 \( 1 + (-36.6 + 6.45i)T + (2.07e3 - 755. i)T^{2} \)
53 \( 1 + 35.4T + 2.80e3T^{2} \)
59 \( 1 + (-31.4 - 86.5i)T + (-2.66e3 + 2.23e3i)T^{2} \)
61 \( 1 + (17.4 + 98.7i)T + (-3.49e3 + 1.27e3i)T^{2} \)
67 \( 1 + (18.1 - 21.6i)T + (-779. - 4.42e3i)T^{2} \)
71 \( 1 + (-40.2 - 23.2i)T + (2.52e3 + 4.36e3i)T^{2} \)
73 \( 1 + (18.0 + 31.2i)T + (-2.66e3 + 4.61e3i)T^{2} \)
79 \( 1 + (-58.8 - 70.1i)T + (-1.08e3 + 6.14e3i)T^{2} \)
83 \( 1 + (50.7 + 60.4i)T + (-1.19e3 + 6.78e3i)T^{2} \)
89 \( 1 + (31.6 + 54.8i)T + (-3.96e3 + 6.85e3i)T^{2} \)
97 \( 1 + (74.9 + 27.2i)T + (7.20e3 + 6.04e3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.93730383425321730484699439824, −12.73791918706083768718819819955, −11.22387551772606571736556102421, −10.70702337312369175629320821896, −9.399199610878691299626100725866, −7.42436426727561957567747501744, −6.09654679733759240928761716238, −5.37611304787907456649960456032, −4.07396381600464075666044365248, −1.75608193593333946879867248383, 2.17027230282178869346622642335, 4.38286901821088171222780227129, 5.47723147867387919221267571103, 6.48949163031182793202915937954, 7.47029160786638413879100381951, 9.497249750404448225771003697869, 10.82893203525068938814677501796, 11.46940323212215099868764294605, 12.63221257591525706494479260487, 13.41795149902790119127879492199

Graph of the $Z$-function along the critical line