L(s) = 1 | + (−0.5 − 0.866i)2-s + (−1.41 + 2.44i)3-s + (−0.499 + 0.866i)4-s + 2.82·6-s + 0.999·8-s + (−2.49 − 4.33i)9-s + (0.5 − 0.866i)11-s + (−1.41 − 2.44i)12-s + 4.24·13-s + (−0.5 − 0.866i)16-s + (1.41 − 2.44i)17-s + (−2.5 + 4.33i)18-s + (2.12 + 3.67i)19-s − 0.999·22-s + (−3 − 5.19i)23-s + (−1.41 + 2.44i)24-s + ⋯ |
L(s) = 1 | + (−0.353 − 0.612i)2-s + (−0.816 + 1.41i)3-s + (−0.249 + 0.433i)4-s + 1.15·6-s + 0.353·8-s + (−0.833 − 1.44i)9-s + (0.150 − 0.261i)11-s + (−0.408 − 0.707i)12-s + 1.17·13-s + (−0.125 − 0.216i)16-s + (0.342 − 0.594i)17-s + (−0.589 + 1.02i)18-s + (0.486 + 0.842i)19-s − 0.213·22-s + (−0.625 − 1.08i)23-s + (−0.288 + 0.499i)24-s + ⋯ |
Λ(s)=(=(1078s/2ΓC(s)L(s)(0.947−0.318i)Λ(2−s)
Λ(s)=(=(1078s/2ΓC(s+1/2)L(s)(0.947−0.318i)Λ(1−s)
Degree: |
2 |
Conductor: |
1078
= 2⋅72⋅11
|
Sign: |
0.947−0.318i
|
Analytic conductor: |
8.60787 |
Root analytic conductor: |
2.93391 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1078(67,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1078, ( :1/2), 0.947−0.318i)
|
Particular Values
L(1) |
≈ |
0.9919968701 |
L(21) |
≈ |
0.9919968701 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.5+0.866i)T |
| 7 | 1 |
| 11 | 1+(−0.5+0.866i)T |
good | 3 | 1+(1.41−2.44i)T+(−1.5−2.59i)T2 |
| 5 | 1+(−2.5+4.33i)T2 |
| 13 | 1−4.24T+13T2 |
| 17 | 1+(−1.41+2.44i)T+(−8.5−14.7i)T2 |
| 19 | 1+(−2.12−3.67i)T+(−9.5+16.4i)T2 |
| 23 | 1+(3+5.19i)T+(−11.5+19.9i)T2 |
| 29 | 1+4T+29T2 |
| 31 | 1+(−3.53+6.12i)T+(−15.5−26.8i)T2 |
| 37 | 1+(1+1.73i)T+(−18.5+32.0i)T2 |
| 41 | 1−2.82T+41T2 |
| 43 | 1−10T+43T2 |
| 47 | 1+(−6.36−11.0i)T+(−23.5+40.7i)T2 |
| 53 | 1+(1−1.73i)T+(−26.5−45.8i)T2 |
| 59 | 1+(5.65−9.79i)T+(−29.5−51.0i)T2 |
| 61 | 1+(−4.94−8.57i)T+(−30.5+52.8i)T2 |
| 67 | 1+(4−6.92i)T+(−33.5−58.0i)T2 |
| 71 | 1−16T+71T2 |
| 73 | 1+(−4.24+7.34i)T+(−36.5−63.2i)T2 |
| 79 | 1+(−4−6.92i)T+(−39.5+68.4i)T2 |
| 83 | 1+12.7T+83T2 |
| 89 | 1+(3.53+6.12i)T+(−44.5+77.0i)T2 |
| 97 | 1+7.07T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.04782721068340521854276309270, −9.356936636813252356059572395977, −8.625616295952235757414077206119, −7.64052900021886298656851426515, −6.16565291277193775863964397411, −5.65331695370207060271284626456, −4.36382061921744176456898733077, −3.93916196950605438771150927825, −2.74174831006288833916842200838, −0.835246760862546430766975005413,
0.905456057023445651646997909672, 1.85187184812690158034404391217, 3.60119681789291084263510779006, 5.13649040754469950502269705972, 5.81593142170049109768435747105, 6.58264945385010845091290977510, 7.23578761412582433242552160222, 7.940360557518477234317406468495, 8.784229410582820689897826088916, 9.714211581038556159289075838540