L(s) = 1 | + (−0.5 − 0.866i)2-s + (−1.41 + 2.44i)3-s + (−0.499 + 0.866i)4-s + 2.82·6-s + 0.999·8-s + (−2.49 − 4.33i)9-s + (0.5 − 0.866i)11-s + (−1.41 − 2.44i)12-s + 4.24·13-s + (−0.5 − 0.866i)16-s + (1.41 − 2.44i)17-s + (−2.5 + 4.33i)18-s + (2.12 + 3.67i)19-s − 0.999·22-s + (−3 − 5.19i)23-s + (−1.41 + 2.44i)24-s + ⋯ |
L(s) = 1 | + (−0.353 − 0.612i)2-s + (−0.816 + 1.41i)3-s + (−0.249 + 0.433i)4-s + 1.15·6-s + 0.353·8-s + (−0.833 − 1.44i)9-s + (0.150 − 0.261i)11-s + (−0.408 − 0.707i)12-s + 1.17·13-s + (−0.125 − 0.216i)16-s + (0.342 − 0.594i)17-s + (−0.589 + 1.02i)18-s + (0.486 + 0.842i)19-s − 0.213·22-s + (−0.625 − 1.08i)23-s + (−0.288 + 0.499i)24-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1078 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.947 - 0.318i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1078 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.947 - 0.318i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.9919968701\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9919968701\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.5 + 0.866i)T \) |
| 7 | \( 1 \) |
| 11 | \( 1 + (-0.5 + 0.866i)T \) |
good | 3 | \( 1 + (1.41 - 2.44i)T + (-1.5 - 2.59i)T^{2} \) |
| 5 | \( 1 + (-2.5 + 4.33i)T^{2} \) |
| 13 | \( 1 - 4.24T + 13T^{2} \) |
| 17 | \( 1 + (-1.41 + 2.44i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-2.12 - 3.67i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (3 + 5.19i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + 4T + 29T^{2} \) |
| 31 | \( 1 + (-3.53 + 6.12i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (1 + 1.73i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 - 2.82T + 41T^{2} \) |
| 43 | \( 1 - 10T + 43T^{2} \) |
| 47 | \( 1 + (-6.36 - 11.0i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (1 - 1.73i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (5.65 - 9.79i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-4.94 - 8.57i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (4 - 6.92i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 16T + 71T^{2} \) |
| 73 | \( 1 + (-4.24 + 7.34i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-4 - 6.92i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + 12.7T + 83T^{2} \) |
| 89 | \( 1 + (3.53 + 6.12i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + 7.07T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.04782721068340521854276309270, −9.356936636813252356059572395977, −8.625616295952235757414077206119, −7.64052900021886298656851426515, −6.16565291277193775863964397411, −5.65331695370207060271284626456, −4.36382061921744176456898733077, −3.93916196950605438771150927825, −2.74174831006288833916842200838, −0.835246760862546430766975005413,
0.905456057023445651646997909672, 1.85187184812690158034404391217, 3.60119681789291084263510779006, 5.13649040754469950502269705972, 5.81593142170049109768435747105, 6.58264945385010845091290977510, 7.23578761412582433242552160222, 7.940360557518477234317406468495, 8.784229410582820689897826088916, 9.714211581038556159289075838540