L(s) = 1 | − 2.48·2-s + 4.15·4-s − 0.675i·5-s − i·7-s − 5.35·8-s + 1.67i·10-s + 1.80i·11-s − 2.28·13-s + 2.48i·14-s + 4.96·16-s + (3.67 − 1.86i)17-s + 0.518·19-s − 2.80i·20-s − 4.48i·22-s − 0.0376i·23-s + ⋯ |
L(s) = 1 | − 1.75·2-s + 2.07·4-s − 0.301i·5-s − 0.377i·7-s − 1.89·8-s + 0.529i·10-s + 0.544i·11-s − 0.634·13-s + 0.663i·14-s + 1.24·16-s + (0.891 − 0.453i)17-s + 0.119·19-s − 0.627i·20-s − 0.955i·22-s − 0.00784i·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1071 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.453 + 0.891i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1071 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.453 + 0.891i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.6073000953\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6073000953\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 + iT \) |
| 17 | \( 1 + (-3.67 + 1.86i)T \) |
good | 2 | \( 1 + 2.48T + 2T^{2} \) |
| 5 | \( 1 + 0.675iT - 5T^{2} \) |
| 11 | \( 1 - 1.80iT - 11T^{2} \) |
| 13 | \( 1 + 2.28T + 13T^{2} \) |
| 19 | \( 1 - 0.518T + 19T^{2} \) |
| 23 | \( 1 + 0.0376iT - 23T^{2} \) |
| 29 | \( 1 - 0.806iT - 29T^{2} \) |
| 31 | \( 1 + 1.28iT - 31T^{2} \) |
| 37 | \( 1 + 7.83iT - 37T^{2} \) |
| 41 | \( 1 + 0.518iT - 41T^{2} \) |
| 43 | \( 1 + 3.57T + 43T^{2} \) |
| 47 | \( 1 - 3.98T + 47T^{2} \) |
| 53 | \( 1 - 4.09T + 53T^{2} \) |
| 59 | \( 1 + 10.2T + 59T^{2} \) |
| 61 | \( 1 - 14.5iT - 61T^{2} \) |
| 67 | \( 1 - 9.81T + 67T^{2} \) |
| 71 | \( 1 + 13.6iT - 71T^{2} \) |
| 73 | \( 1 + 12.0iT - 73T^{2} \) |
| 79 | \( 1 - 4.99iT - 79T^{2} \) |
| 83 | \( 1 + 2.26T + 83T^{2} \) |
| 89 | \( 1 - 13.2T + 89T^{2} \) |
| 97 | \( 1 + 13.3iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.597506720777925485758728210451, −9.086437559395529114978734326048, −8.148707236836684585549153990715, −7.40137219728201846601116988458, −6.92968453989699884282277763499, −5.68333614737282175406749872619, −4.52887475631487771864218428402, −3.00920659873667225451339598046, −1.81840686931564249675152172910, −0.59166988843703493181867154096,
1.05974093296693408061635605290, 2.36147605405511391774619153971, 3.34677680768542383581610109637, 5.06110906545939861727327173839, 6.19568153793027331370221835231, 6.93036236889963939156429236468, 7.83540492110659555230987774330, 8.410827283149381737142875689112, 9.212364636212692331274517868791, 9.967483360092499671097294864222