Properties

Label 2-1071-17.16-c1-0-21
Degree $2$
Conductor $1071$
Sign $0.453 + 0.891i$
Analytic cond. $8.55197$
Root an. cond. $2.92437$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.48·2-s + 4.15·4-s − 0.675i·5-s i·7-s − 5.35·8-s + 1.67i·10-s + 1.80i·11-s − 2.28·13-s + 2.48i·14-s + 4.96·16-s + (3.67 − 1.86i)17-s + 0.518·19-s − 2.80i·20-s − 4.48i·22-s − 0.0376i·23-s + ⋯
L(s)  = 1  − 1.75·2-s + 2.07·4-s − 0.301i·5-s − 0.377i·7-s − 1.89·8-s + 0.529i·10-s + 0.544i·11-s − 0.634·13-s + 0.663i·14-s + 1.24·16-s + (0.891 − 0.453i)17-s + 0.119·19-s − 0.627i·20-s − 0.955i·22-s − 0.00784i·23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1071 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.453 + 0.891i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1071 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.453 + 0.891i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1071\)    =    \(3^{2} \cdot 7 \cdot 17\)
Sign: $0.453 + 0.891i$
Analytic conductor: \(8.55197\)
Root analytic conductor: \(2.92437\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1071} (883, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1071,\ (\ :1/2),\ 0.453 + 0.891i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.6073000953\)
\(L(\frac12)\) \(\approx\) \(0.6073000953\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
7 \( 1 + iT \)
17 \( 1 + (-3.67 + 1.86i)T \)
good2 \( 1 + 2.48T + 2T^{2} \)
5 \( 1 + 0.675iT - 5T^{2} \)
11 \( 1 - 1.80iT - 11T^{2} \)
13 \( 1 + 2.28T + 13T^{2} \)
19 \( 1 - 0.518T + 19T^{2} \)
23 \( 1 + 0.0376iT - 23T^{2} \)
29 \( 1 - 0.806iT - 29T^{2} \)
31 \( 1 + 1.28iT - 31T^{2} \)
37 \( 1 + 7.83iT - 37T^{2} \)
41 \( 1 + 0.518iT - 41T^{2} \)
43 \( 1 + 3.57T + 43T^{2} \)
47 \( 1 - 3.98T + 47T^{2} \)
53 \( 1 - 4.09T + 53T^{2} \)
59 \( 1 + 10.2T + 59T^{2} \)
61 \( 1 - 14.5iT - 61T^{2} \)
67 \( 1 - 9.81T + 67T^{2} \)
71 \( 1 + 13.6iT - 71T^{2} \)
73 \( 1 + 12.0iT - 73T^{2} \)
79 \( 1 - 4.99iT - 79T^{2} \)
83 \( 1 + 2.26T + 83T^{2} \)
89 \( 1 - 13.2T + 89T^{2} \)
97 \( 1 + 13.3iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.597506720777925485758728210451, −9.086437559395529114978734326048, −8.148707236836684585549153990715, −7.40137219728201846601116988458, −6.92968453989699884282277763499, −5.68333614737282175406749872619, −4.52887475631487771864218428402, −3.00920659873667225451339598046, −1.81840686931564249675152172910, −0.59166988843703493181867154096, 1.05974093296693408061635605290, 2.36147605405511391774619153971, 3.34677680768542383581610109637, 5.06110906545939861727327173839, 6.19568153793027331370221835231, 6.93036236889963939156429236468, 7.83540492110659555230987774330, 8.410827283149381737142875689112, 9.212364636212692331274517868791, 9.967483360092499671097294864222

Graph of the $Z$-function along the critical line