Properties

Label 2-1064-1.1-c1-0-23
Degree $2$
Conductor $1064$
Sign $-1$
Analytic cond. $8.49608$
Root an. cond. $2.91480$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.30·3-s − 5-s − 7-s − 1.30·9-s − 2.30·11-s − 3.60·13-s − 1.30·15-s + 1.69·17-s + 19-s − 1.30·21-s − 0.394·23-s − 4·25-s − 5.60·27-s − 4.30·29-s − 8.30·31-s − 3·33-s + 35-s + 3.60·37-s − 4.69·39-s + 0.302·41-s + 7.21·43-s + 1.30·45-s − 7.60·47-s + 49-s + 2.21·51-s − 3.90·53-s + 2.30·55-s + ⋯
L(s)  = 1  + 0.752·3-s − 0.447·5-s − 0.377·7-s − 0.434·9-s − 0.694·11-s − 1.00·13-s − 0.336·15-s + 0.411·17-s + 0.229·19-s − 0.284·21-s − 0.0822·23-s − 0.800·25-s − 1.07·27-s − 0.799·29-s − 1.49·31-s − 0.522·33-s + 0.169·35-s + 0.592·37-s − 0.752·39-s + 0.0472·41-s + 1.09·43-s + 0.194·45-s − 1.10·47-s + 0.142·49-s + 0.309·51-s − 0.536·53-s + 0.310·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1064 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1064 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1064\)    =    \(2^{3} \cdot 7 \cdot 19\)
Sign: $-1$
Analytic conductor: \(8.49608\)
Root analytic conductor: \(2.91480\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1064,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 + T \)
19 \( 1 - T \)
good3 \( 1 - 1.30T + 3T^{2} \)
5 \( 1 + T + 5T^{2} \)
11 \( 1 + 2.30T + 11T^{2} \)
13 \( 1 + 3.60T + 13T^{2} \)
17 \( 1 - 1.69T + 17T^{2} \)
23 \( 1 + 0.394T + 23T^{2} \)
29 \( 1 + 4.30T + 29T^{2} \)
31 \( 1 + 8.30T + 31T^{2} \)
37 \( 1 - 3.60T + 37T^{2} \)
41 \( 1 - 0.302T + 41T^{2} \)
43 \( 1 - 7.21T + 43T^{2} \)
47 \( 1 + 7.60T + 47T^{2} \)
53 \( 1 + 3.90T + 53T^{2} \)
59 \( 1 - 5.60T + 59T^{2} \)
61 \( 1 - 8.21T + 61T^{2} \)
67 \( 1 + 10.9T + 67T^{2} \)
71 \( 1 - 8.81T + 71T^{2} \)
73 \( 1 + 5.90T + 73T^{2} \)
79 \( 1 + 14T + 79T^{2} \)
83 \( 1 + 10.5T + 83T^{2} \)
89 \( 1 - 13.8T + 89T^{2} \)
97 \( 1 - 16.8T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.463460236620376338393224653993, −8.663661194119957934342112649897, −7.67202475509365774400635116925, −7.41163122871988559973614870312, −5.98612541146469300117065519906, −5.18202102813611815477541820396, −3.93945824571502802441167542365, −3.08023459896184746060602119412, −2.13950487143381518025975937095, 0, 2.13950487143381518025975937095, 3.08023459896184746060602119412, 3.93945824571502802441167542365, 5.18202102813611815477541820396, 5.98612541146469300117065519906, 7.41163122871988559973614870312, 7.67202475509365774400635116925, 8.663661194119957934342112649897, 9.463460236620376338393224653993

Graph of the $Z$-function along the critical line