L(s) = 1 | + (0.866 + 1.5i)2-s + (−1 + 1.73i)4-s + (−0.866 + 1.5i)5-s − 1.73·8-s − 3·10-s + (0.5 − 0.866i)13-s + (−0.5 − 0.866i)16-s + (−1.73 − 3i)20-s + (−1 − 1.73i)25-s + 1.73·26-s + (1.49 − 2.59i)40-s + (0.5 + 0.866i)43-s + (0.866 + 1.5i)47-s + (−0.5 + 0.866i)49-s + (1.73 − 3i)50-s + ⋯ |
L(s) = 1 | + (0.866 + 1.5i)2-s + (−1 + 1.73i)4-s + (−0.866 + 1.5i)5-s − 1.73·8-s − 3·10-s + (0.5 − 0.866i)13-s + (−0.5 − 0.866i)16-s + (−1.73 − 3i)20-s + (−1 − 1.73i)25-s + 1.73·26-s + (1.49 − 2.59i)40-s + (0.5 + 0.866i)43-s + (0.866 + 1.5i)47-s + (−0.5 + 0.866i)49-s + (1.73 − 3i)50-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1053 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.984 + 0.173i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1053 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.984 + 0.173i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.274589772\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.274589772\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 13 | \( 1 + (-0.5 + 0.866i)T \) |
good | 2 | \( 1 + (-0.866 - 1.5i)T + (-0.5 + 0.866i)T^{2} \) |
| 5 | \( 1 + (0.866 - 1.5i)T + (-0.5 - 0.866i)T^{2} \) |
| 7 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 11 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 17 | \( 1 - T^{2} \) |
| 19 | \( 1 - T^{2} \) |
| 23 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 31 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 - T^{2} \) |
| 41 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 43 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 47 | \( 1 + (-0.866 - 1.5i)T + (-0.5 + 0.866i)T^{2} \) |
| 53 | \( 1 - T^{2} \) |
| 59 | \( 1 + (-0.866 + 1.5i)T + (-0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 - 1.73T + T^{2} \) |
| 73 | \( 1 - T^{2} \) |
| 79 | \( 1 + (-1 - 1.73i)T + (-0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 + (0.866 + 1.5i)T + (-0.5 + 0.866i)T^{2} \) |
| 89 | \( 1 + 1.73T + T^{2} \) |
| 97 | \( 1 + (0.5 - 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.77804672645163451567055999713, −9.608552997400485235388681308432, −8.260876305063738486828230124597, −7.84421374709206640889484447594, −7.06962042650512646373723824587, −6.40120070376491987023819865297, −5.67918610040895029947474036861, −4.50844261417428712609051275008, −3.63112894797056687438294681628, −2.88981620915998760789091756648,
0.974709722942862359909312818417, 2.12020921313418719733169410193, 3.62280058907257961823322069057, 4.16421040461620436451638837568, 4.94806068903257175845825198812, 5.72878421458455699466345581077, 7.18049669183365754943293814252, 8.413811449837907192481786018577, 8.981873359459042513195175512690, 9.812033177476301740131527037243