L(s) = 1 | − i·4-s + (1.36 + 0.366i)7-s + (0.866 − 0.5i)13-s − 16-s + (−1.86 + 0.5i)19-s + (0.866 + 0.5i)25-s + (0.366 − 1.36i)28-s + (0.133 − 0.5i)31-s + (−0.5 − 0.133i)37-s + (1.5 − 0.866i)43-s + (0.866 + 0.5i)49-s + (−0.5 − 0.866i)52-s + (−0.866 − 1.5i)61-s + i·64-s + (−1.86 + 0.5i)67-s + ⋯ |
L(s) = 1 | − i·4-s + (1.36 + 0.366i)7-s + (0.866 − 0.5i)13-s − 16-s + (−1.86 + 0.5i)19-s + (0.866 + 0.5i)25-s + (0.366 − 1.36i)28-s + (0.133 − 0.5i)31-s + (−0.5 − 0.133i)37-s + (1.5 − 0.866i)43-s + (0.866 + 0.5i)49-s + (−0.5 − 0.866i)52-s + (−0.866 − 1.5i)61-s + i·64-s + (−1.86 + 0.5i)67-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1053 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.790 + 0.612i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1053 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.790 + 0.612i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.169896218\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.169896218\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 13 | \( 1 + (-0.866 + 0.5i)T \) |
good | 2 | \( 1 + iT^{2} \) |
| 5 | \( 1 + (-0.866 - 0.5i)T^{2} \) |
| 7 | \( 1 + (-1.36 - 0.366i)T + (0.866 + 0.5i)T^{2} \) |
| 11 | \( 1 - iT^{2} \) |
| 17 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 19 | \( 1 + (1.86 - 0.5i)T + (0.866 - 0.5i)T^{2} \) |
| 23 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 + T^{2} \) |
| 31 | \( 1 + (-0.133 + 0.5i)T + (-0.866 - 0.5i)T^{2} \) |
| 37 | \( 1 + (0.5 + 0.133i)T + (0.866 + 0.5i)T^{2} \) |
| 41 | \( 1 + (0.866 - 0.5i)T^{2} \) |
| 43 | \( 1 + (-1.5 + 0.866i)T + (0.5 - 0.866i)T^{2} \) |
| 47 | \( 1 + (-0.866 + 0.5i)T^{2} \) |
| 53 | \( 1 + T^{2} \) |
| 59 | \( 1 - iT^{2} \) |
| 61 | \( 1 + (0.866 + 1.5i)T + (-0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (1.86 - 0.5i)T + (0.866 - 0.5i)T^{2} \) |
| 71 | \( 1 + (0.866 - 0.5i)T^{2} \) |
| 73 | \( 1 + (0.366 - 0.366i)T - iT^{2} \) |
| 79 | \( 1 + (0.866 - 1.5i)T + (-0.5 - 0.866i)T^{2} \) |
| 83 | \( 1 + (0.866 - 0.5i)T^{2} \) |
| 89 | \( 1 + (0.866 + 0.5i)T^{2} \) |
| 97 | \( 1 + (0.5 - 1.86i)T + (-0.866 - 0.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.26614352558357109390960450977, −9.004586211593924466257542584892, −8.556033315572340527200370477403, −7.62237877198390450413606418175, −6.44349799219986015869052521966, −5.72652759694820104339948829329, −4.91865824301696614113832841713, −4.02836833980096695020634244918, −2.34422098883461694228211026036, −1.36100195807167291870398411891,
1.69579698879086947381424681942, 2.92075635556168363370907075603, 4.33214069245162835833062651811, 4.52211205373209389539420001455, 6.07462461841598969185374974621, 6.99461958155489945749451669456, 7.78792149418219742388162403253, 8.654947338712099557387686845525, 8.888353585921958261506490808356, 10.52220573458455826012059203335