Properties

Label 2-1053-1.1-c1-0-11
Degree $2$
Conductor $1053$
Sign $1$
Analytic cond. $8.40824$
Root an. cond. $2.89969$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.400·2-s − 1.83·4-s + 1.54·5-s − 0.0740·7-s − 1.53·8-s + 0.617·10-s − 2.80·11-s + 13-s − 0.0296·14-s + 3.06·16-s + 3.02·17-s + 4.58·19-s − 2.83·20-s − 1.12·22-s + 6.24·23-s − 2.61·25-s + 0.400·26-s + 0.136·28-s + 4.78·29-s + 5.41·31-s + 4.29·32-s + 1.20·34-s − 0.114·35-s − 2.01·37-s + 1.83·38-s − 2.37·40-s + 0.0386·41-s + ⋯
L(s)  = 1  + 0.282·2-s − 0.919·4-s + 0.690·5-s − 0.0279·7-s − 0.543·8-s + 0.195·10-s − 0.844·11-s + 0.277·13-s − 0.00792·14-s + 0.766·16-s + 0.733·17-s + 1.05·19-s − 0.635·20-s − 0.238·22-s + 1.30·23-s − 0.523·25-s + 0.0784·26-s + 0.0257·28-s + 0.888·29-s + 0.971·31-s + 0.760·32-s + 0.207·34-s − 0.0193·35-s − 0.330·37-s + 0.297·38-s − 0.374·40-s + 0.00603·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1053 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1053 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1053\)    =    \(3^{4} \cdot 13\)
Sign: $1$
Analytic conductor: \(8.40824\)
Root analytic conductor: \(2.89969\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1053,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.655286194\)
\(L(\frac12)\) \(\approx\) \(1.655286194\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
13 \( 1 - T \)
good2 \( 1 - 0.400T + 2T^{2} \)
5 \( 1 - 1.54T + 5T^{2} \)
7 \( 1 + 0.0740T + 7T^{2} \)
11 \( 1 + 2.80T + 11T^{2} \)
17 \( 1 - 3.02T + 17T^{2} \)
19 \( 1 - 4.58T + 19T^{2} \)
23 \( 1 - 6.24T + 23T^{2} \)
29 \( 1 - 4.78T + 29T^{2} \)
31 \( 1 - 5.41T + 31T^{2} \)
37 \( 1 + 2.01T + 37T^{2} \)
41 \( 1 - 0.0386T + 41T^{2} \)
43 \( 1 + 7.96T + 43T^{2} \)
47 \( 1 - 13.6T + 47T^{2} \)
53 \( 1 - 5.37T + 53T^{2} \)
59 \( 1 + 1.38T + 59T^{2} \)
61 \( 1 - 9.70T + 61T^{2} \)
67 \( 1 - 8.13T + 67T^{2} \)
71 \( 1 + 2.37T + 71T^{2} \)
73 \( 1 + 13.2T + 73T^{2} \)
79 \( 1 - 5.33T + 79T^{2} \)
83 \( 1 - 14.8T + 83T^{2} \)
89 \( 1 - 14.1T + 89T^{2} \)
97 \( 1 + 11.2T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.948901151519398854294329851627, −9.141318948118313873745779804748, −8.350807876169437402010184212390, −7.49845050950849663728962136116, −6.32365054554868448758065502267, −5.38659493214312902727559192058, −4.93780767635993490352755158609, −3.63666197021720050586182319598, −2.70174527525861033376270586442, −1.00353790974562063929348967726, 1.00353790974562063929348967726, 2.70174527525861033376270586442, 3.63666197021720050586182319598, 4.93780767635993490352755158609, 5.38659493214312902727559192058, 6.32365054554868448758065502267, 7.49845050950849663728962136116, 8.350807876169437402010184212390, 9.141318948118313873745779804748, 9.948901151519398854294329851627

Graph of the $Z$-function along the critical line