L(s) = 1 | + 4.70·2-s + 3·3-s + 14.1·4-s − 5·5-s + 14.1·6-s + 7·7-s + 28.7·8-s + 9·9-s − 23.5·10-s + 24.5·11-s + 42.3·12-s − 35.0·13-s + 32.9·14-s − 15·15-s + 22.1·16-s − 18.4·17-s + 42.3·18-s − 67.4·19-s − 70.5·20-s + 21·21-s + 115.·22-s − 145.·23-s + 86.1·24-s + 25·25-s − 164.·26-s + 27·27-s + 98.7·28-s + ⋯ |
L(s) = 1 | + 1.66·2-s + 0.577·3-s + 1.76·4-s − 0.447·5-s + 0.959·6-s + 0.377·7-s + 1.26·8-s + 0.333·9-s − 0.743·10-s + 0.674·11-s + 1.01·12-s − 0.747·13-s + 0.628·14-s − 0.258·15-s + 0.345·16-s − 0.262·17-s + 0.554·18-s − 0.813·19-s − 0.788·20-s + 0.218·21-s + 1.12·22-s − 1.32·23-s + 0.732·24-s + 0.200·25-s − 1.24·26-s + 0.192·27-s + 0.666·28-s + ⋯ |
Λ(s)=(=(105s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(105s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
4.188768699 |
L(21) |
≈ |
4.188768699 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1−3T |
| 5 | 1+5T |
| 7 | 1−7T |
good | 2 | 1−4.70T+8T2 |
| 11 | 1−24.5T+1.33e3T2 |
| 13 | 1+35.0T+2.19e3T2 |
| 17 | 1+18.4T+4.91e3T2 |
| 19 | 1+67.4T+6.85e3T2 |
| 23 | 1+145.T+1.21e4T2 |
| 29 | 1−214.T+2.43e4T2 |
| 31 | 1+88.6T+2.97e4T2 |
| 37 | 1−162.T+5.06e4T2 |
| 41 | 1+337.T+6.89e4T2 |
| 43 | 1−122.T+7.95e4T2 |
| 47 | 1−354.T+1.03e5T2 |
| 53 | 1−676.T+1.48e5T2 |
| 59 | 1−501.T+2.05e5T2 |
| 61 | 1+708.T+2.26e5T2 |
| 67 | 1+907.T+3.00e5T2 |
| 71 | 1−430.T+3.57e5T2 |
| 73 | 1−41.3T+3.89e5T2 |
| 79 | 1−890.T+4.93e5T2 |
| 83 | 1+1.05e3T+5.71e5T2 |
| 89 | 1−1.47e3T+7.04e5T2 |
| 97 | 1−555.T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.45661982419435445974030247562, −12.31294012545683469886175642022, −11.74340904356697436312554036667, −10.38833133752295853137547898109, −8.762382598156180586820762710996, −7.41717170158120664380132296828, −6.24001980998692394717884292756, −4.71333953154907923884078271650, −3.82511888816381233528132119600, −2.32086255885988398607874075783,
2.32086255885988398607874075783, 3.82511888816381233528132119600, 4.71333953154907923884078271650, 6.24001980998692394717884292756, 7.41717170158120664380132296828, 8.762382598156180586820762710996, 10.38833133752295853137547898109, 11.74340904356697436312554036667, 12.31294012545683469886175642022, 13.45661982419435445974030247562