L(s) = 1 | + (−1 + i)2-s − i·3-s − 2i·4-s + 3i·5-s + (1 + i)6-s + 3·7-s + (2 + 2i)8-s + 2·9-s + (−3 − 3i)10-s − 2·12-s + i·13-s + (−3 + 3i)14-s + 3·15-s − 4·16-s − 7·17-s + (−2 + 2i)18-s + ⋯ |
L(s) = 1 | + (−0.707 + 0.707i)2-s − 0.577i·3-s − i·4-s + 1.34i·5-s + (0.408 + 0.408i)6-s + 1.13·7-s + (0.707 + 0.707i)8-s + 0.666·9-s + (−0.948 − 0.948i)10-s − 0.577·12-s + 0.277i·13-s + (−0.801 + 0.801i)14-s + 0.774·15-s − 16-s − 1.69·17-s + (−0.471 + 0.471i)18-s + ⋯ |
Λ(s)=(=(104s/2ΓC(s)L(s)(0.707−0.707i)Λ(2−s)
Λ(s)=(=(104s/2ΓC(s+1/2)L(s)(0.707−0.707i)Λ(1−s)
Degree: |
2 |
Conductor: |
104
= 23⋅13
|
Sign: |
0.707−0.707i
|
Analytic conductor: |
0.830444 |
Root analytic conductor: |
0.911287 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ104(53,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 104, ( :1/2), 0.707−0.707i)
|
Particular Values
L(1) |
≈ |
0.752271+0.311601i |
L(21) |
≈ |
0.752271+0.311601i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(1−i)T |
| 13 | 1−iT |
good | 3 | 1+iT−3T2 |
| 5 | 1−3iT−5T2 |
| 7 | 1−3T+7T2 |
| 11 | 1−11T2 |
| 17 | 1+7T+17T2 |
| 19 | 1+4iT−19T2 |
| 23 | 1−4T+23T2 |
| 29 | 1+4iT−29T2 |
| 31 | 1+8T+31T2 |
| 37 | 1−7iT−37T2 |
| 41 | 1−2T+41T2 |
| 43 | 1+iT−43T2 |
| 47 | 1+7T+47T2 |
| 53 | 1−4iT−53T2 |
| 59 | 1+14iT−59T2 |
| 61 | 1+10iT−61T2 |
| 67 | 1−2iT−67T2 |
| 71 | 1+3T+71T2 |
| 73 | 1−14T+73T2 |
| 79 | 1+10T+79T2 |
| 83 | 1−14iT−83T2 |
| 89 | 1+89T2 |
| 97 | 1−8T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.15440631000278160403879527824, −13.20852039438558746320617634653, −11.26399418836677676300121220421, −10.92856591718551450502520099306, −9.508812300858634453042338551359, −8.195138470375305827482347337470, −7.10015539971666652880095457705, −6.57035023944590742165974568824, −4.73879432561462994763240805629, −2.05759140072052388639569224374,
1.61690266206879990138128123661, 4.10530874863142447259873660113, 5.01634651797727751766763907520, 7.40053747850704823055861792041, 8.626171664997409426871552911051, 9.199662015815668273650387336959, 10.52597930620038220776880637397, 11.34323865242704371941958808037, 12.58600300582480593983015104864, 13.19648486565889657619060078782