L(s) = 1 | + (−1 + i)2-s − i·3-s − 2i·4-s + 3i·5-s + (1 + i)6-s + 3·7-s + (2 + 2i)8-s + 2·9-s + (−3 − 3i)10-s − 2·12-s + i·13-s + (−3 + 3i)14-s + 3·15-s − 4·16-s − 7·17-s + (−2 + 2i)18-s + ⋯ |
L(s) = 1 | + (−0.707 + 0.707i)2-s − 0.577i·3-s − i·4-s + 1.34i·5-s + (0.408 + 0.408i)6-s + 1.13·7-s + (0.707 + 0.707i)8-s + 0.666·9-s + (−0.948 − 0.948i)10-s − 0.577·12-s + 0.277i·13-s + (−0.801 + 0.801i)14-s + 0.774·15-s − 16-s − 1.69·17-s + (−0.471 + 0.471i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 104 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.707 - 0.707i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 104 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.707 - 0.707i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.752271 + 0.311601i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.752271 + 0.311601i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1 - i)T \) |
| 13 | \( 1 - iT \) |
good | 3 | \( 1 + iT - 3T^{2} \) |
| 5 | \( 1 - 3iT - 5T^{2} \) |
| 7 | \( 1 - 3T + 7T^{2} \) |
| 11 | \( 1 - 11T^{2} \) |
| 17 | \( 1 + 7T + 17T^{2} \) |
| 19 | \( 1 + 4iT - 19T^{2} \) |
| 23 | \( 1 - 4T + 23T^{2} \) |
| 29 | \( 1 + 4iT - 29T^{2} \) |
| 31 | \( 1 + 8T + 31T^{2} \) |
| 37 | \( 1 - 7iT - 37T^{2} \) |
| 41 | \( 1 - 2T + 41T^{2} \) |
| 43 | \( 1 + iT - 43T^{2} \) |
| 47 | \( 1 + 7T + 47T^{2} \) |
| 53 | \( 1 - 4iT - 53T^{2} \) |
| 59 | \( 1 + 14iT - 59T^{2} \) |
| 61 | \( 1 + 10iT - 61T^{2} \) |
| 67 | \( 1 - 2iT - 67T^{2} \) |
| 71 | \( 1 + 3T + 71T^{2} \) |
| 73 | \( 1 - 14T + 73T^{2} \) |
| 79 | \( 1 + 10T + 79T^{2} \) |
| 83 | \( 1 - 14iT - 83T^{2} \) |
| 89 | \( 1 + 89T^{2} \) |
| 97 | \( 1 - 8T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.15440631000278160403879527824, −13.20852039438558746320617634653, −11.26399418836677676300121220421, −10.92856591718551450502520099306, −9.508812300858634453042338551359, −8.195138470375305827482347337470, −7.10015539971666652880095457705, −6.57035023944590742165974568824, −4.73879432561462994763240805629, −2.05759140072052388639569224374,
1.61690266206879990138128123661, 4.10530874863142447259873660113, 5.01634651797727751766763907520, 7.40053747850704823055861792041, 8.626171664997409426871552911051, 9.199662015815668273650387336959, 10.52597930620038220776880637397, 11.34323865242704371941958808037, 12.58600300582480593983015104864, 13.19648486565889657619060078782