Properties

Label 2-103-103.13-c1-0-6
Degree $2$
Conductor $103$
Sign $-0.177 + 0.984i$
Analytic cond. $0.822459$
Root an. cond. $0.906895$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.0797 + 0.0149i)2-s + (0.284 − 3.06i)3-s + (−1.85 − 0.720i)4-s + (−1.51 + 2.00i)5-s + (0.0683 − 0.240i)6-s + (3.32 − 2.05i)7-s + (−0.275 − 0.170i)8-s + (−6.38 − 1.19i)9-s + (−0.150 + 0.137i)10-s + (0.349 + 0.0653i)11-s + (−2.73 + 5.49i)12-s + (3.77 − 2.33i)13-s + (0.295 − 0.114i)14-s + (5.71 + 5.21i)15-s + (2.92 + 2.66i)16-s + (0.150 + 0.529i)17-s + ⋯
L(s)  = 1  + (0.0563 + 0.0105i)2-s + (0.164 − 1.77i)3-s + (−0.929 − 0.360i)4-s + (−0.676 + 0.896i)5-s + (0.0279 − 0.0981i)6-s + (1.25 − 0.777i)7-s + (−0.0973 − 0.0602i)8-s + (−2.12 − 0.397i)9-s + (−0.0476 + 0.0434i)10-s + (0.105 + 0.0197i)11-s + (−0.790 + 1.58i)12-s + (1.04 − 0.648i)13-s + (0.0789 − 0.0305i)14-s + (1.47 + 1.34i)15-s + (0.731 + 0.667i)16-s + (0.0365 + 0.128i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 103 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.177 + 0.984i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 103 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.177 + 0.984i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(103\)
Sign: $-0.177 + 0.984i$
Analytic conductor: \(0.822459\)
Root analytic conductor: \(0.906895\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{103} (13, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 103,\ (\ :1/2),\ -0.177 + 0.984i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.581032 - 0.695418i\)
\(L(\frac12)\) \(\approx\) \(0.581032 - 0.695418i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad103 \( 1 + (0.0812 + 10.1i)T \)
good2 \( 1 + (-0.0797 - 0.0149i)T + (1.86 + 0.722i)T^{2} \)
3 \( 1 + (-0.284 + 3.06i)T + (-2.94 - 0.551i)T^{2} \)
5 \( 1 + (1.51 - 2.00i)T + (-1.36 - 4.80i)T^{2} \)
7 \( 1 + (-3.32 + 2.05i)T + (3.12 - 6.26i)T^{2} \)
11 \( 1 + (-0.349 - 0.0653i)T + (10.2 + 3.97i)T^{2} \)
13 \( 1 + (-3.77 + 2.33i)T + (5.79 - 11.6i)T^{2} \)
17 \( 1 + (-0.150 - 0.529i)T + (-14.4 + 8.94i)T^{2} \)
19 \( 1 + (-0.346 - 3.73i)T + (-18.6 + 3.49i)T^{2} \)
23 \( 1 + (-6.69 + 1.25i)T + (21.4 - 8.30i)T^{2} \)
29 \( 1 + (5.02 - 6.65i)T + (-7.93 - 27.8i)T^{2} \)
31 \( 1 + (5.55 + 5.06i)T + (2.86 + 30.8i)T^{2} \)
37 \( 1 + (-0.571 + 1.14i)T + (-22.2 - 29.5i)T^{2} \)
41 \( 1 + (1.87 + 2.47i)T + (-11.2 + 39.4i)T^{2} \)
43 \( 1 + (-0.141 - 0.284i)T + (-25.9 + 34.3i)T^{2} \)
47 \( 1 + 7.57T + 47T^{2} \)
53 \( 1 + (-0.180 - 1.94i)T + (-52.0 + 9.73i)T^{2} \)
59 \( 1 + (-9.69 - 6.00i)T + (26.2 + 52.8i)T^{2} \)
61 \( 1 + (-1.96 - 6.89i)T + (-51.8 + 32.1i)T^{2} \)
67 \( 1 + (-0.111 - 0.0689i)T + (29.8 + 59.9i)T^{2} \)
71 \( 1 + (-2.38 - 3.15i)T + (-19.4 + 68.2i)T^{2} \)
73 \( 1 + (-1.67 - 2.21i)T + (-19.9 + 70.2i)T^{2} \)
79 \( 1 + (1.39 - 1.84i)T + (-21.6 - 75.9i)T^{2} \)
83 \( 1 + (3.29 - 2.03i)T + (36.9 - 74.2i)T^{2} \)
89 \( 1 + (-4.97 + 1.92i)T + (65.7 - 59.9i)T^{2} \)
97 \( 1 + (0.155 - 0.548i)T + (-82.4 - 51.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.46161463833778920974197345501, −12.80197053059000670250081394703, −11.39019682991700353637290627671, −10.73040607730535093553938182268, −8.679857821656811387359716352106, −7.83759889870811241818413095564, −7.03784415819958476609571817029, −5.56981384718562693097175765894, −3.62600682720448312680972022297, −1.28468390147185094086462379705, 3.63643805919971163631816040756, 4.69237013099882677955918811174, 5.22588369465593516280585848867, 8.194698951690084025314380887148, 8.821149810722318026827003003941, 9.413331843133579662116598298962, 11.10937086464012699744471184801, 11.68105775285214566530610018604, 13.15973711470955491285169671190, 14.38351180235573552009906272835

Graph of the $Z$-function along the critical line