Properties

Label 2-1014-1.1-c3-0-66
Degree $2$
Conductor $1014$
Sign $-1$
Analytic cond. $59.8279$
Root an. cond. $7.73485$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s − 3·3-s + 4·4-s + 16·5-s − 6·6-s − 28·7-s + 8·8-s + 9·9-s + 32·10-s − 34·11-s − 12·12-s − 56·14-s − 48·15-s + 16·16-s + 138·17-s + 18·18-s − 108·19-s + 64·20-s + 84·21-s − 68·22-s − 52·23-s − 24·24-s + 131·25-s − 27·27-s − 112·28-s − 190·29-s − 96·30-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s + 1/2·4-s + 1.43·5-s − 0.408·6-s − 1.51·7-s + 0.353·8-s + 1/3·9-s + 1.01·10-s − 0.931·11-s − 0.288·12-s − 1.06·14-s − 0.826·15-s + 1/4·16-s + 1.96·17-s + 0.235·18-s − 1.30·19-s + 0.715·20-s + 0.872·21-s − 0.658·22-s − 0.471·23-s − 0.204·24-s + 1.04·25-s − 0.192·27-s − 0.755·28-s − 1.21·29-s − 0.584·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1014 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1014 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1014\)    =    \(2 \cdot 3 \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(59.8279\)
Root analytic conductor: \(7.73485\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1014,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - p T \)
3 \( 1 + p T \)
13 \( 1 \)
good5 \( 1 - 16 T + p^{3} T^{2} \)
7 \( 1 + 4 p T + p^{3} T^{2} \)
11 \( 1 + 34 T + p^{3} T^{2} \)
17 \( 1 - 138 T + p^{3} T^{2} \)
19 \( 1 + 108 T + p^{3} T^{2} \)
23 \( 1 + 52 T + p^{3} T^{2} \)
29 \( 1 + 190 T + p^{3} T^{2} \)
31 \( 1 - 176 T + p^{3} T^{2} \)
37 \( 1 + 342 T + p^{3} T^{2} \)
41 \( 1 + 240 T + p^{3} T^{2} \)
43 \( 1 + 140 T + p^{3} T^{2} \)
47 \( 1 + 454 T + p^{3} T^{2} \)
53 \( 1 - 198 T + p^{3} T^{2} \)
59 \( 1 - 154 T + p^{3} T^{2} \)
61 \( 1 - 34 T + p^{3} T^{2} \)
67 \( 1 - 656 T + p^{3} T^{2} \)
71 \( 1 + 550 T + p^{3} T^{2} \)
73 \( 1 + 614 T + p^{3} T^{2} \)
79 \( 1 - 8 T + p^{3} T^{2} \)
83 \( 1 + 762 T + p^{3} T^{2} \)
89 \( 1 - 444 T + p^{3} T^{2} \)
97 \( 1 + 1022 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.582827937702391576103065246347, −8.287493151150060168293832577700, −7.05545538704194162890816979781, −6.32640914284916798230720684255, −5.70816053756138740046661173995, −5.14068526838945189756835408080, −3.68176029589737001381461525591, −2.77667777494192000689085499077, −1.65640861255921842921377102476, 0, 1.65640861255921842921377102476, 2.77667777494192000689085499077, 3.68176029589737001381461525591, 5.14068526838945189756835408080, 5.70816053756138740046661173995, 6.32640914284916798230720684255, 7.05545538704194162890816979781, 8.287493151150060168293832577700, 9.582827937702391576103065246347

Graph of the $Z$-function along the critical line