L(s) = 1 | − 9.41·5-s + (3.32 − 6.16i)7-s + 17.6·11-s + 17.9i·13-s − 13.3·17-s + 14.6·19-s − 30.1·23-s + 63.6·25-s − 25.9i·29-s + 11.5·31-s + (−31.2 + 57.9i)35-s − 17.9·37-s − 12.6·41-s − 19.2i·43-s − 48.3i·47-s + ⋯ |
L(s) = 1 | − 1.88·5-s + (0.474 − 0.880i)7-s + 1.60·11-s + 1.37i·13-s − 0.787·17-s + 0.770·19-s − 1.31·23-s + 2.54·25-s − 0.894i·29-s + 0.372·31-s + (−0.893 + 1.65i)35-s − 0.484·37-s − 0.308·41-s − 0.447i·43-s − 1.02i·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.391 + 0.920i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.391 + 0.920i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.8399312516\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8399312516\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (-3.32 + 6.16i)T \) |
good | 5 | \( 1 + 9.41T + 25T^{2} \) |
| 11 | \( 1 - 17.6T + 121T^{2} \) |
| 13 | \( 1 - 17.9iT - 169T^{2} \) |
| 17 | \( 1 + 13.3T + 289T^{2} \) |
| 19 | \( 1 - 14.6T + 361T^{2} \) |
| 23 | \( 1 + 30.1T + 529T^{2} \) |
| 29 | \( 1 + 25.9iT - 841T^{2} \) |
| 31 | \( 1 - 11.5T + 961T^{2} \) |
| 37 | \( 1 + 17.9T + 1.36e3T^{2} \) |
| 41 | \( 1 + 12.6T + 1.68e3T^{2} \) |
| 43 | \( 1 + 19.2iT - 1.84e3T^{2} \) |
| 47 | \( 1 + 48.3iT - 2.20e3T^{2} \) |
| 53 | \( 1 + 3.42iT - 2.80e3T^{2} \) |
| 59 | \( 1 - 53.9iT - 3.48e3T^{2} \) |
| 61 | \( 1 + 59.8iT - 3.72e3T^{2} \) |
| 67 | \( 1 + 104. iT - 4.48e3T^{2} \) |
| 71 | \( 1 + 76.5T + 5.04e3T^{2} \) |
| 73 | \( 1 + 142. iT - 5.32e3T^{2} \) |
| 79 | \( 1 - 47.9iT - 6.24e3T^{2} \) |
| 83 | \( 1 + 90.9iT - 6.88e3T^{2} \) |
| 89 | \( 1 + 122.T + 7.92e3T^{2} \) |
| 97 | \( 1 - 94.7iT - 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.356618083034959613723691021993, −8.591980964810204268228334967148, −7.78756459044962692045193091587, −7.05147763361623374466900591307, −6.44761466201713743690127835666, −4.65671644916847506755940538557, −4.11741395253251189360043522399, −3.58027110725517179329638569059, −1.66655661393873353488825910204, −0.31227263236172267001743871145,
1.16951407725413659125542476124, 2.90767818580656691297296199027, 3.82155144732067973494283796909, 4.60612698791558353064156146049, 5.70207598123213143070439884851, 6.80743365339176355859821616230, 7.65009996107874339281827554324, 8.400822711112173385800187020962, 8.879778286269007148982391591016, 10.04485385400376829711282465751