L(s) = 1 | + (0.349 − 1.69i)3-s + 3.69·5-s + (1.40 − 2.24i)7-s + (−2.75 − 1.18i)9-s + 1.47·11-s + (−1.34 + 2.33i)13-s + (1.29 − 6.27i)15-s + (3.28 − 5.69i)17-s + (0.444 + 0.769i)19-s + (−3.31 − 3.16i)21-s − 6.28·23-s + 8.68·25-s + (−2.97 + 4.25i)27-s + (1.25 + 2.17i)29-s + (3.40 + 5.89i)31-s + ⋯ |
L(s) = 1 | + (0.201 − 0.979i)3-s + 1.65·5-s + (0.531 − 0.847i)7-s + (−0.918 − 0.395i)9-s + 0.445·11-s + (−0.374 + 0.648i)13-s + (0.334 − 1.62i)15-s + (0.797 − 1.38i)17-s + (0.101 + 0.176i)19-s + (−0.722 − 0.691i)21-s − 1.31·23-s + 1.73·25-s + (−0.572 + 0.819i)27-s + (0.233 + 0.403i)29-s + (0.611 + 1.05i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.190 + 0.981i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.190 + 0.981i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.365170434\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.365170434\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.349 + 1.69i)T \) |
| 7 | \( 1 + (-1.40 + 2.24i)T \) |
good | 5 | \( 1 - 3.69T + 5T^{2} \) |
| 11 | \( 1 - 1.47T + 11T^{2} \) |
| 13 | \( 1 + (1.34 - 2.33i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (-3.28 + 5.69i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-0.444 - 0.769i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + 6.28T + 23T^{2} \) |
| 29 | \( 1 + (-1.25 - 2.17i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (-3.40 - 5.89i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (1.38 + 2.40i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (2.05 - 3.56i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (0.00618 + 0.0107i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (3.49 - 6.05i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (1.60 - 2.78i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-3.45 - 5.98i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-2.86 + 4.96i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (4.73 + 8.19i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 5.46T + 71T^{2} \) |
| 73 | \( 1 + (6.03 - 10.4i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-5.72 + 9.91i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (2.23 + 3.87i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (4.43 + 7.68i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (6.58 + 11.4i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.733864437816586783745216670303, −9.048279954618423477633324843195, −8.018653958606438185261821160049, −7.13536003472815780391527582223, −6.50371408377511550642947600548, −5.62131860316359037425551068739, −4.68701181304165230751247305788, −3.12480129779635462651186558067, −1.98945166766857644454963637492, −1.17688736407831848937463953416,
1.80679661295125280428201686411, 2.66538709856972608246273600499, 3.94543305387240282319054500557, 5.16061646378169559277793887487, 5.71278249256307805134153042209, 6.34462652926123119907121213276, 8.043495636901880489024006085301, 8.568576385477626517475421844961, 9.597820959061696129369322458518, 9.956018844603940940271257664526