L(s) = 1 | + (−1.73 − 0.0789i)3-s − 0.460·5-s + (−2.25 + 1.38i)7-s + (2.98 + 0.273i)9-s + 3.64·11-s + (0.730 + 1.26i)13-s + (0.796 + 0.0363i)15-s + (−1.86 − 3.23i)17-s + (2.02 − 3.51i)19-s + (4.01 − 2.20i)21-s − 1.13·23-s − 4.78·25-s + (−5.14 − 0.708i)27-s + (−4.48 + 7.77i)29-s + (−0.257 + 0.445i)31-s + ⋯ |
L(s) = 1 | + (−0.998 − 0.0455i)3-s − 0.205·5-s + (−0.853 + 0.521i)7-s + (0.995 + 0.0910i)9-s + 1.09·11-s + (0.202 + 0.350i)13-s + (0.205 + 0.00938i)15-s + (−0.452 − 0.784i)17-s + (0.465 − 0.805i)19-s + (0.876 − 0.482i)21-s − 0.236·23-s − 0.957·25-s + (−0.990 − 0.136i)27-s + (−0.833 + 1.44i)29-s + (−0.0462 + 0.0800i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.764 - 0.644i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.764 - 0.644i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.4006352662\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.4006352662\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (1.73 + 0.0789i)T \) |
| 7 | \( 1 + (2.25 - 1.38i)T \) |
good | 5 | \( 1 + 0.460T + 5T^{2} \) |
| 11 | \( 1 - 3.64T + 11T^{2} \) |
| 13 | \( 1 + (-0.730 - 1.26i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (1.86 + 3.23i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-2.02 + 3.51i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + 1.13T + 23T^{2} \) |
| 29 | \( 1 + (4.48 - 7.77i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (0.257 - 0.445i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (4.55 - 7.88i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (0.472 + 0.819i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (4.66 - 8.07i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-1.16 - 2.01i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-6.21 - 10.7i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (6.44 - 11.1i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (6.04 + 10.4i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (1.16 - 2.00i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 1.67T + 71T^{2} \) |
| 73 | \( 1 + (6.62 + 11.4i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (2.50 + 4.33i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (3.32 - 5.75i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + (1.36 - 2.36i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (5.59 - 9.68i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.31459945233086739782356200622, −9.359941409415027155559225842119, −8.984125117556910209550034391000, −7.49591318772300041347099260095, −6.74565765151101268822082364419, −6.15004319458635247703476331284, −5.15905943986277968099351958805, −4.20748437566498736808595903149, −3.10029542898103028857316454742, −1.46888033376599572451699296229,
0.21725722712362141910799107253, 1.73673665905131937270034253148, 3.77606647391854451661155897704, 4.01518092750174708105673252263, 5.55950860449618476541696515471, 6.16541151867950841204177029123, 6.96483344040998626347428211401, 7.77962536111066591537894230726, 8.969586908571796919051900080132, 9.905694074114242719893325037915