L(s) = 1 | + (−1.73 − 0.0789i)3-s − 0.460·5-s + (−2.25 + 1.38i)7-s + (2.98 + 0.273i)9-s + 3.64·11-s + (0.730 + 1.26i)13-s + (0.796 + 0.0363i)15-s + (−1.86 − 3.23i)17-s + (2.02 − 3.51i)19-s + (4.01 − 2.20i)21-s − 1.13·23-s − 4.78·25-s + (−5.14 − 0.708i)27-s + (−4.48 + 7.77i)29-s + (−0.257 + 0.445i)31-s + ⋯ |
L(s) = 1 | + (−0.998 − 0.0455i)3-s − 0.205·5-s + (−0.853 + 0.521i)7-s + (0.995 + 0.0910i)9-s + 1.09·11-s + (0.202 + 0.350i)13-s + (0.205 + 0.00938i)15-s + (−0.452 − 0.784i)17-s + (0.465 − 0.805i)19-s + (0.876 − 0.482i)21-s − 0.236·23-s − 0.957·25-s + (−0.990 − 0.136i)27-s + (−0.833 + 1.44i)29-s + (−0.0462 + 0.0800i)31-s + ⋯ |
Λ(s)=(=(1008s/2ΓC(s)L(s)(−0.764−0.644i)Λ(2−s)
Λ(s)=(=(1008s/2ΓC(s+1/2)L(s)(−0.764−0.644i)Λ(1−s)
Degree: |
2 |
Conductor: |
1008
= 24⋅32⋅7
|
Sign: |
−0.764−0.644i
|
Analytic conductor: |
8.04892 |
Root analytic conductor: |
2.83706 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1008(961,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1008, ( :1/2), −0.764−0.644i)
|
Particular Values
L(1) |
≈ |
0.4006352662 |
L(21) |
≈ |
0.4006352662 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+(1.73+0.0789i)T |
| 7 | 1+(2.25−1.38i)T |
good | 5 | 1+0.460T+5T2 |
| 11 | 1−3.64T+11T2 |
| 13 | 1+(−0.730−1.26i)T+(−6.5+11.2i)T2 |
| 17 | 1+(1.86+3.23i)T+(−8.5+14.7i)T2 |
| 19 | 1+(−2.02+3.51i)T+(−9.5−16.4i)T2 |
| 23 | 1+1.13T+23T2 |
| 29 | 1+(4.48−7.77i)T+(−14.5−25.1i)T2 |
| 31 | 1+(0.257−0.445i)T+(−15.5−26.8i)T2 |
| 37 | 1+(4.55−7.88i)T+(−18.5−32.0i)T2 |
| 41 | 1+(0.472+0.819i)T+(−20.5+35.5i)T2 |
| 43 | 1+(4.66−8.07i)T+(−21.5−37.2i)T2 |
| 47 | 1+(−1.16−2.01i)T+(−23.5+40.7i)T2 |
| 53 | 1+(−6.21−10.7i)T+(−26.5+45.8i)T2 |
| 59 | 1+(6.44−11.1i)T+(−29.5−51.0i)T2 |
| 61 | 1+(6.04+10.4i)T+(−30.5+52.8i)T2 |
| 67 | 1+(1.16−2.00i)T+(−33.5−58.0i)T2 |
| 71 | 1+1.67T+71T2 |
| 73 | 1+(6.62+11.4i)T+(−36.5+63.2i)T2 |
| 79 | 1+(2.50+4.33i)T+(−39.5+68.4i)T2 |
| 83 | 1+(3.32−5.75i)T+(−41.5−71.8i)T2 |
| 89 | 1+(1.36−2.36i)T+(−44.5−77.0i)T2 |
| 97 | 1+(5.59−9.68i)T+(−48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.31459945233086739782356200622, −9.359941409415027155559225842119, −8.984125117556910209550034391000, −7.49591318772300041347099260095, −6.74565765151101268822082364419, −6.15004319458635247703476331284, −5.15905943986277968099351958805, −4.20748437566498736808595903149, −3.10029542898103028857316454742, −1.46888033376599572451699296229,
0.21725722712362141910799107253, 1.73673665905131937270034253148, 3.77606647391854451661155897704, 4.01518092750174708105673252263, 5.55950860449618476541696515471, 6.16541151867950841204177029123, 6.96483344040998626347428211401, 7.77962536111066591537894230726, 8.969586908571796919051900080132, 9.905694074114242719893325037915