L(s) = 1 | + (2.09 + 3.62i)5-s + (1.62 + 2.09i)7-s + (2.59 + 1.5i)11-s − 2.44i·13-s + (−0.507 + 0.878i)17-s + (0.878 − 0.507i)19-s + (3.67 − 2.12i)23-s + (−6.24 + 10.8i)25-s − 1.24i·29-s + (−4.86 − 2.80i)31-s + (−4.18 + 10.2i)35-s + (−4.12 − 7.13i)37-s + 2.02·41-s − 8.24·43-s + (0.507 + 0.878i)47-s + ⋯ |
L(s) = 1 | + (0.935 + 1.61i)5-s + (0.612 + 0.790i)7-s + (0.783 + 0.452i)11-s − 0.679i·13-s + (−0.123 + 0.213i)17-s + (0.201 − 0.116i)19-s + (0.766 − 0.442i)23-s + (−1.24 + 2.16i)25-s − 0.230i·29-s + (−0.873 − 0.504i)31-s + (−0.706 + 1.73i)35-s + (−0.677 − 1.17i)37-s + 0.316·41-s − 1.25·43-s + (0.0739 + 0.128i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.168 - 0.985i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.168 - 0.985i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.069383237\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.069383237\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (-1.62 - 2.09i)T \) |
good | 5 | \( 1 + (-2.09 - 3.62i)T + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (-2.59 - 1.5i)T + (5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + 2.44iT - 13T^{2} \) |
| 17 | \( 1 + (0.507 - 0.878i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-0.878 + 0.507i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-3.67 + 2.12i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + 1.24iT - 29T^{2} \) |
| 31 | \( 1 + (4.86 + 2.80i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (4.12 + 7.13i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 - 2.02T + 41T^{2} \) |
| 43 | \( 1 + 8.24T + 43T^{2} \) |
| 47 | \( 1 + (-0.507 - 0.878i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-1.07 - 0.621i)T + (26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-5.76 + 9.98i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-5.12 + 2.95i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (5 - 8.66i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 10.2iT - 71T^{2} \) |
| 73 | \( 1 + (-7.24 - 4.18i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (5.62 + 9.73i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 - 3.16T + 83T^{2} \) |
| 89 | \( 1 + (-5.19 - 9i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + 3.76iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.13956023448837574019595045952, −9.459271655557506711624553540945, −8.587849648663850400908098381263, −7.43970725803390592415027321353, −6.75898156283073763165416656913, −5.92338233099151805691132945182, −5.17882138537958431721563387490, −3.70567734099486976384918283831, −2.64813632942778248163509947592, −1.83168900885703679754039013027,
1.05064315691622734939393738901, 1.79591602732710900154590549549, 3.64749594222050520309198451140, 4.70309817167901008740532944520, 5.23203400396574545207754618534, 6.31004615083620550137648153659, 7.25111696833699606411365189859, 8.406906099513226626161571374765, 8.935190081598548881330113736956, 9.609119064414538728171807297627