L(s) = 1 | + (−0.144 − 0.250i)5-s + (2.26 + 1.36i)7-s + (−5.23 − 3.01i)11-s − 5.46i·13-s + (2.22 − 3.85i)17-s + (−3.51 + 2.03i)19-s + (1.11 − 0.645i)23-s + (2.45 − 4.25i)25-s − 0.377i·29-s + (3.09 + 1.78i)31-s + (0.0126 − 0.766i)35-s + (1.01 + 1.75i)37-s + 5.50·41-s + 6.45·43-s + (−5.38 − 9.33i)47-s + ⋯ |
L(s) = 1 | + (−0.0647 − 0.112i)5-s + (0.857 + 0.514i)7-s + (−1.57 − 0.910i)11-s − 1.51i·13-s + (0.540 − 0.935i)17-s + (−0.806 + 0.465i)19-s + (0.232 − 0.134i)23-s + (0.491 − 0.851i)25-s − 0.0701i·29-s + (0.556 + 0.321i)31-s + (0.00214 − 0.129i)35-s + (0.166 + 0.289i)37-s + 0.859·41-s + 0.984·43-s + (−0.785 − 1.36i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.200 + 0.979i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.200 + 0.979i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.350095583\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.350095583\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (-2.26 - 1.36i)T \) |
good | 5 | \( 1 + (0.144 + 0.250i)T + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (5.23 + 3.01i)T + (5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + 5.46iT - 13T^{2} \) |
| 17 | \( 1 + (-2.22 + 3.85i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (3.51 - 2.03i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-1.11 + 0.645i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + 0.377iT - 29T^{2} \) |
| 31 | \( 1 + (-3.09 - 1.78i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-1.01 - 1.75i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 - 5.50T + 41T^{2} \) |
| 43 | \( 1 - 6.45T + 43T^{2} \) |
| 47 | \( 1 + (5.38 + 9.33i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (9.77 + 5.64i)T + (26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (0.790 - 1.36i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-9.54 + 5.51i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-2.04 + 3.53i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 0.410iT - 71T^{2} \) |
| 73 | \( 1 + (11.1 + 6.41i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (6.01 + 10.4i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 - 0.155T + 83T^{2} \) |
| 89 | \( 1 + (-3.34 - 5.79i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 - 16.5iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.972264440855556240128044181550, −8.664901978971254755016241662588, −8.134447552987165302738031331027, −7.60991808293290932972637630587, −6.16470017387239585304171474264, −5.35690717031080228537122925883, −4.79221566411861358670723462652, −3.20884233016756432857266193523, −2.42997797489056290230910278602, −0.62503383832755405301818974247,
1.56854812105395358604016997780, 2.63909112377606240243753337120, 4.19834451188293357906185841801, 4.71767854333413237713593876750, 5.81396719887737804635949328525, 6.98510311658177532999581131574, 7.59991732918765735929640360520, 8.374818700048061543400900057862, 9.357266210908664795992663187860, 10.24547925210511297017259631754