Properties

Label 2-1008-21.11-c2-0-30
Degree $2$
Conductor $1008$
Sign $-0.961 + 0.276i$
Analytic cond. $27.4660$
Root an. cond. $5.24080$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (3.37 − 1.94i)5-s + (6.97 + 0.619i)7-s + (−9.62 − 5.55i)11-s − 17.2·13-s + (−19.3 − 11.1i)17-s + (−8.62 − 14.9i)19-s + (−22.6 + 13.1i)23-s + (−4.89 + 8.47i)25-s − 8.73i·29-s + (−22.0 + 38.1i)31-s + (24.7 − 11.5i)35-s + (−19.3 − 33.4i)37-s − 44.1i·41-s + 31.1·43-s + (−12.8 + 7.43i)47-s + ⋯
L(s)  = 1  + (0.675 − 0.389i)5-s + (0.996 + 0.0884i)7-s + (−0.874 − 0.505i)11-s − 1.32·13-s + (−1.13 − 0.655i)17-s + (−0.453 − 0.786i)19-s + (−0.986 + 0.569i)23-s + (−0.195 + 0.339i)25-s − 0.301i·29-s + (−0.710 + 1.23i)31-s + (0.707 − 0.328i)35-s + (−0.522 − 0.904i)37-s − 1.07i·41-s + 0.724·43-s + (−0.274 + 0.158i)47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.961 + 0.276i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.961 + 0.276i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1008\)    =    \(2^{4} \cdot 3^{2} \cdot 7\)
Sign: $-0.961 + 0.276i$
Analytic conductor: \(27.4660\)
Root analytic conductor: \(5.24080\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{1008} (305, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1008,\ (\ :1),\ -0.961 + 0.276i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.5881002585\)
\(L(\frac12)\) \(\approx\) \(0.5881002585\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 + (-6.97 - 0.619i)T \)
good5 \( 1 + (-3.37 + 1.94i)T + (12.5 - 21.6i)T^{2} \)
11 \( 1 + (9.62 + 5.55i)T + (60.5 + 104. i)T^{2} \)
13 \( 1 + 17.2T + 169T^{2} \)
17 \( 1 + (19.3 + 11.1i)T + (144.5 + 250. i)T^{2} \)
19 \( 1 + (8.62 + 14.9i)T + (-180.5 + 312. i)T^{2} \)
23 \( 1 + (22.6 - 13.1i)T + (264.5 - 458. i)T^{2} \)
29 \( 1 + 8.73iT - 841T^{2} \)
31 \( 1 + (22.0 - 38.1i)T + (-480.5 - 832. i)T^{2} \)
37 \( 1 + (19.3 + 33.4i)T + (-684.5 + 1.18e3i)T^{2} \)
41 \( 1 + 44.1iT - 1.68e3T^{2} \)
43 \( 1 - 31.1T + 1.84e3T^{2} \)
47 \( 1 + (12.8 - 7.43i)T + (1.10e3 - 1.91e3i)T^{2} \)
53 \( 1 + (-30.9 - 17.8i)T + (1.40e3 + 2.43e3i)T^{2} \)
59 \( 1 + (2.75 + 1.58i)T + (1.74e3 + 3.01e3i)T^{2} \)
61 \( 1 + (-21.7 - 37.6i)T + (-1.86e3 + 3.22e3i)T^{2} \)
67 \( 1 + (13.8 - 24.0i)T + (-2.24e3 - 3.88e3i)T^{2} \)
71 \( 1 + 97.1iT - 5.04e3T^{2} \)
73 \( 1 + (68.4 - 118. i)T + (-2.66e3 - 4.61e3i)T^{2} \)
79 \( 1 + (-27.9 - 48.4i)T + (-3.12e3 + 5.40e3i)T^{2} \)
83 \( 1 + 137. iT - 6.88e3T^{2} \)
89 \( 1 + (-44.6 + 25.7i)T + (3.96e3 - 6.85e3i)T^{2} \)
97 \( 1 - 16.6T + 9.40e3T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.239619243977567214031135157109, −8.728689810819364305826437633849, −7.66905372412188522576226457538, −7.02400440876745292391811822355, −5.63121972042069675798291310101, −5.16601471100497359801735337803, −4.25828246511529121438723005466, −2.62254009924682250867212801850, −1.86809501137886406685055096954, −0.16000386352794005135151068551, 1.94514443247068437421389005239, 2.41789613707191055112091512861, 4.13907325782251563742782785876, 4.90199566480296944143638243546, 5.85797275740573054410265464469, 6.76554971401165281837088824119, 7.77509625090970976201627640455, 8.293491962481217190306116076637, 9.491271194021208498584981205347, 10.24560607293157164657552241646

Graph of the $Z$-function along the critical line