L(s) = 1 | + (6.60 − 3.81i)5-s + (−4.89 + 5.00i)7-s + (4.41 + 2.55i)11-s − 20.7·13-s + (22.7 + 13.1i)17-s + (11.1 + 19.3i)19-s + (−34.4 + 19.8i)23-s + (16.5 − 28.6i)25-s + 7.62i·29-s + (−5.89 + 10.2i)31-s + (−13.2 + 51.7i)35-s + (30.1 + 52.2i)37-s + 11.8i·41-s + 30.3·43-s + (33.0 − 19.0i)47-s + ⋯ |
L(s) = 1 | + (1.32 − 0.762i)5-s + (−0.698 + 0.715i)7-s + (0.401 + 0.231i)11-s − 1.59·13-s + (1.33 + 0.772i)17-s + (0.588 + 1.01i)19-s + (−1.49 + 0.864i)23-s + (0.662 − 1.14i)25-s + 0.262i·29-s + (−0.190 + 0.329i)31-s + (−0.377 + 1.47i)35-s + (0.815 + 1.41i)37-s + 0.287i·41-s + 0.705·43-s + (0.703 − 0.406i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.394 - 0.918i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.394 - 0.918i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(1.886774234\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.886774234\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (4.89 - 5.00i)T \) |
good | 5 | \( 1 + (-6.60 + 3.81i)T + (12.5 - 21.6i)T^{2} \) |
| 11 | \( 1 + (-4.41 - 2.55i)T + (60.5 + 104. i)T^{2} \) |
| 13 | \( 1 + 20.7T + 169T^{2} \) |
| 17 | \( 1 + (-22.7 - 13.1i)T + (144.5 + 250. i)T^{2} \) |
| 19 | \( 1 + (-11.1 - 19.3i)T + (-180.5 + 312. i)T^{2} \) |
| 23 | \( 1 + (34.4 - 19.8i)T + (264.5 - 458. i)T^{2} \) |
| 29 | \( 1 - 7.62iT - 841T^{2} \) |
| 31 | \( 1 + (5.89 - 10.2i)T + (-480.5 - 832. i)T^{2} \) |
| 37 | \( 1 + (-30.1 - 52.2i)T + (-684.5 + 1.18e3i)T^{2} \) |
| 41 | \( 1 - 11.8iT - 1.68e3T^{2} \) |
| 43 | \( 1 - 30.3T + 1.84e3T^{2} \) |
| 47 | \( 1 + (-33.0 + 19.0i)T + (1.10e3 - 1.91e3i)T^{2} \) |
| 53 | \( 1 + (5.11 + 2.95i)T + (1.40e3 + 2.43e3i)T^{2} \) |
| 59 | \( 1 + (38.2 + 22.1i)T + (1.74e3 + 3.01e3i)T^{2} \) |
| 61 | \( 1 + (-24.7 - 42.8i)T + (-1.86e3 + 3.22e3i)T^{2} \) |
| 67 | \( 1 + (-31.5 + 54.6i)T + (-2.24e3 - 3.88e3i)T^{2} \) |
| 71 | \( 1 + 41.6iT - 5.04e3T^{2} \) |
| 73 | \( 1 + (-2.08 + 3.61i)T + (-2.66e3 - 4.61e3i)T^{2} \) |
| 79 | \( 1 + (20.8 + 36.1i)T + (-3.12e3 + 5.40e3i)T^{2} \) |
| 83 | \( 1 - 145. iT - 6.88e3T^{2} \) |
| 89 | \( 1 + (38.0 - 21.9i)T + (3.96e3 - 6.85e3i)T^{2} \) |
| 97 | \( 1 - 39.5T + 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.704691762992706689370896691334, −9.506695636740245413229570430454, −8.334595877934871187844009323600, −7.47926214179299066988297194874, −6.19630660162149658315131904752, −5.70731010440309382747856513546, −4.94579654298794833989123310470, −3.56657645721891954066275055153, −2.32828925714224730164112373314, −1.38587671050006967011488038825,
0.58661695492557946610219971343, 2.28164503397539372799473612687, 2.98795762307236761728072720804, 4.27986517292704299077096137418, 5.49693737618424510261161165240, 6.18072411803077466691151519352, 7.13989633631368280340057557432, 7.59315508333094857707537562837, 9.187502505464661298737929045255, 9.804822394743973268680579037723