| L(s) = 1 | + 1.41i·2-s − 1.00·4-s − 1.41i·5-s + 7-s + 2.00·10-s + 13-s + 1.41i·14-s − 0.999·16-s − 19-s + 1.41i·20-s − 1.41i·23-s − 1.00·25-s + 1.41i·26-s − 1.00·28-s + 31-s − 1.41i·32-s + ⋯ |
| L(s) = 1 | + 1.41i·2-s − 1.00·4-s − 1.41i·5-s + 7-s + 2.00·10-s + 13-s + 1.41i·14-s − 0.999·16-s − 19-s + 1.41i·20-s − 1.41i·23-s − 1.00·25-s + 1.41i·26-s − 1.00·28-s + 31-s − 1.41i·32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2601 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.577 - 0.816i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2601 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.577 - 0.816i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.385932529\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.385932529\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 \) |
| 17 | \( 1 \) |
| good | 2 | \( 1 - 1.41iT - T^{2} \) |
| 5 | \( 1 + 1.41iT - T^{2} \) |
| 7 | \( 1 - T + T^{2} \) |
| 11 | \( 1 - T^{2} \) |
| 13 | \( 1 - T + T^{2} \) |
| 19 | \( 1 + T + T^{2} \) |
| 23 | \( 1 + 1.41iT - T^{2} \) |
| 29 | \( 1 - T^{2} \) |
| 31 | \( 1 - T + T^{2} \) |
| 37 | \( 1 - T + T^{2} \) |
| 41 | \( 1 - T^{2} \) |
| 43 | \( 1 - T + T^{2} \) |
| 47 | \( 1 - T^{2} \) |
| 53 | \( 1 - T^{2} \) |
| 59 | \( 1 - T^{2} \) |
| 61 | \( 1 + T + T^{2} \) |
| 67 | \( 1 - T + T^{2} \) |
| 71 | \( 1 - 1.41iT - T^{2} \) |
| 73 | \( 1 + T^{2} \) |
| 79 | \( 1 + T^{2} \) |
| 83 | \( 1 - 1.41iT - T^{2} \) |
| 89 | \( 1 + 1.41iT - T^{2} \) |
| 97 | \( 1 + T + T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.712502136809551322482288698504, −8.292449558643552495869693056336, −7.947116007536442213699005582084, −6.79603435381507656929637024601, −6.09987593422197040195441876733, −5.39370643743594992798754820461, −4.55197176692512336774066255493, −4.25150576193916439430171373150, −2.35162409662817927720561272408, −1.08862604239403277836145302538,
1.36634196148069773260660042738, 2.25768207863032055466577602759, 3.08607128049824109054955052032, 3.85152813712949199070838417329, 4.63496849065484323620311657964, 5.91583259817789952282606135466, 6.61175659698328670981637055092, 7.52170400555902544978772114909, 8.271064049761973304945799187619, 9.203325448370294046301506908560