Basic invariants
| Dimension: | $2$ |
| Group: | $\textrm{GL(2,3)}$ |
| Conductor: | \(2601\)\(\medspace = 3^{2} \cdot 17^{2} \) |
| Artin number field: | Galois closure of 8.2.182660427.1 |
| Galois orbit size: | $2$ |
| Smallest permutation container: | 24T22 |
| Parity: | odd |
| Projective image: | $S_4$ |
| Projective field: | Galois closure of 4.2.7803.1 |
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 11 }$ to precision 10.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 11 }$:
\( x^{2} + 7x + 2 \)
Roots:
| $r_{ 1 }$ | $=$ |
\( 2 + 8\cdot 11 + 3\cdot 11^{2} + 6\cdot 11^{4} + 3\cdot 11^{5} + 4\cdot 11^{7} + 9\cdot 11^{8} + 5\cdot 11^{9} +O(11^{10})\)
|
| $r_{ 2 }$ | $=$ |
\( 7 a + 4 + \left(9 a + 5\right)\cdot 11 + 3\cdot 11^{2} + 7\cdot 11^{3} + \left(6 a + 10\right)\cdot 11^{4} + \left(8 a + 2\right)\cdot 11^{5} + \left(3 a + 9\right)\cdot 11^{6} + \left(4 a + 9\right)\cdot 11^{7} + \left(9 a + 4\right)\cdot 11^{8} + \left(10 a + 5\right)\cdot 11^{9} +O(11^{10})\)
|
| $r_{ 3 }$ | $=$ |
\( 6 a + 5 + \left(4 a + 10\right)\cdot 11 + \left(7 a + 3\right)\cdot 11^{2} + \left(6 a + 1\right)\cdot 11^{3} + \left(2 a + 9\right)\cdot 11^{4} + \left(6 a + 10\right)\cdot 11^{5} + \left(5 a + 2\right)\cdot 11^{6} + \left(a + 5\right)\cdot 11^{7} + \left(10 a + 2\right)\cdot 11^{8} + \left(5 a + 4\right)\cdot 11^{9} +O(11^{10})\)
|
| $r_{ 4 }$ | $=$ |
\( 10 + 2\cdot 11 + 7\cdot 11^{2} + 10\cdot 11^{3} + 4\cdot 11^{4} + 7\cdot 11^{5} + 10\cdot 11^{6} + 6\cdot 11^{7} + 11^{8} + 5\cdot 11^{9} +O(11^{10})\)
|
| $r_{ 5 }$ | $=$ |
\( 7 a + 2 + \left(9 a + 7\right)\cdot 11 + 2\cdot 11^{2} + 4\cdot 11^{3} + \left(6 a + 9\right)\cdot 11^{4} + \left(8 a + 1\right)\cdot 11^{5} + \left(3 a + 6\right)\cdot 11^{6} + \left(4 a + 9\right)\cdot 11^{7} + \left(9 a + 5\right)\cdot 11^{8} + \left(10 a + 4\right)\cdot 11^{9} +O(11^{10})\)
|
| $r_{ 6 }$ | $=$ |
\( 4 a + 8 + \left(a + 5\right)\cdot 11 + \left(10 a + 7\right)\cdot 11^{2} + \left(10 a + 3\right)\cdot 11^{3} + 4 a\cdot 11^{4} + \left(2 a + 8\right)\cdot 11^{5} + \left(7 a + 1\right)\cdot 11^{6} + \left(6 a + 1\right)\cdot 11^{7} + \left(a + 6\right)\cdot 11^{8} + 5\cdot 11^{9} +O(11^{10})\)
|
| $r_{ 7 }$ | $=$ |
\( 4 a + 10 + \left(a + 3\right)\cdot 11 + \left(10 a + 8\right)\cdot 11^{2} + \left(10 a + 6\right)\cdot 11^{3} + \left(4 a + 1\right)\cdot 11^{4} + \left(2 a + 9\right)\cdot 11^{5} + \left(7 a + 4\right)\cdot 11^{6} + \left(6 a + 1\right)\cdot 11^{7} + \left(a + 5\right)\cdot 11^{8} + 6\cdot 11^{9} +O(11^{10})\)
|
| $r_{ 8 }$ | $=$ |
\( 5 a + 7 + 6 a\cdot 11 + \left(3 a + 7\right)\cdot 11^{2} + \left(4 a + 9\right)\cdot 11^{3} + \left(8 a + 1\right)\cdot 11^{4} + 4 a\cdot 11^{5} + \left(5 a + 8\right)\cdot 11^{6} + \left(9 a + 5\right)\cdot 11^{7} + 8\cdot 11^{8} + \left(5 a + 6\right)\cdot 11^{9} +O(11^{10})\)
|
Generators of the action on the roots $r_1, \ldots, r_{ 8 }$
| Cycle notation |
Character values on conjugacy classes
| Size | Order | Action on $r_1, \ldots, r_{ 8 }$ | Character values | |
| $c1$ | $c2$ | |||
| $1$ | $1$ | $()$ | $2$ | $2$ |
| $1$ | $2$ | $(1,4)(2,6)(3,8)(5,7)$ | $-2$ | $-2$ |
| $12$ | $2$ | $(1,3)(2,6)(4,8)$ | $0$ | $0$ |
| $8$ | $3$ | $(1,5,3)(4,7,8)$ | $-1$ | $-1$ |
| $6$ | $4$ | $(1,6,4,2)(3,7,8,5)$ | $0$ | $0$ |
| $8$ | $6$ | $(1,8,5,4,3,7)(2,6)$ | $1$ | $1$ |
| $6$ | $8$ | $(1,2,3,7,4,6,8,5)$ | $-\zeta_{8}^{3} - \zeta_{8}$ | $\zeta_{8}^{3} + \zeta_{8}$ |
| $6$ | $8$ | $(1,6,3,5,4,2,8,7)$ | $\zeta_{8}^{3} + \zeta_{8}$ | $-\zeta_{8}^{3} - \zeta_{8}$ |