Properties

Label 16-966e8-1.1-c5e8-0-2
Degree $16$
Conductor $7.583\times 10^{23}$
Sign $1$
Analytic cond. $3.31971\times 10^{17}$
Root an. cond. $12.4471$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 32·2-s + 72·3-s + 576·4-s + 25·5-s + 2.30e3·6-s − 392·7-s + 7.68e3·8-s + 2.91e3·9-s + 800·10-s + 417·11-s + 4.14e4·12-s + 417·13-s − 1.25e4·14-s + 1.80e3·15-s + 8.44e4·16-s + 1.36e3·17-s + 9.33e4·18-s + 2.99e3·19-s + 1.44e4·20-s − 2.82e4·21-s + 1.33e4·22-s + 4.23e3·23-s + 5.52e5·24-s − 9.75e3·25-s + 1.33e4·26-s + 8.74e4·27-s − 2.25e5·28-s + ⋯
L(s)  = 1  + 5.65·2-s + 4.61·3-s + 18·4-s + 0.447·5-s + 26.1·6-s − 3.02·7-s + 42.4·8-s + 12·9-s + 2.52·10-s + 1.03·11-s + 83.1·12-s + 0.684·13-s − 17.1·14-s + 2.06·15-s + 82.5·16-s + 1.14·17-s + 67.8·18-s + 1.90·19-s + 8.04·20-s − 13.9·21-s + 5.87·22-s + 1.66·23-s + 195.·24-s − 3.12·25-s + 3.87·26-s + 23.0·27-s − 54.4·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 3^{8} \cdot 7^{8} \cdot 23^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(6-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 3^{8} \cdot 7^{8} \cdot 23^{8}\right)^{s/2} \, \Gamma_{\C}(s+5/2)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(16\)
Conductor: \(2^{8} \cdot 3^{8} \cdot 7^{8} \cdot 23^{8}\)
Sign: $1$
Analytic conductor: \(3.31971\times 10^{17}\)
Root analytic conductor: \(12.4471\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((16,\ 2^{8} \cdot 3^{8} \cdot 7^{8} \cdot 23^{8} ,\ ( \ : [5/2]^{8} ),\ 1 )\)

Particular Values

\(L(3)\) \(\approx\) \(184964.4036\)
\(L(\frac12)\) \(\approx\) \(184964.4036\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( ( 1 - p^{2} T )^{8} \)
3 \( ( 1 - p^{2} T )^{8} \)
7 \( ( 1 + p^{2} T )^{8} \)
23 \( ( 1 - p^{2} T )^{8} \)
good5 \( 1 - p^{2} T + 10377 T^{2} - 448618 T^{3} + 13403857 p T^{4} - 2929900059 T^{5} + 13120303559 p^{2} T^{6} - 12832693161698 T^{7} + 1172734342752212 T^{8} - 12832693161698 p^{5} T^{9} + 13120303559 p^{12} T^{10} - 2929900059 p^{15} T^{11} + 13403857 p^{21} T^{12} - 448618 p^{25} T^{13} + 10377 p^{30} T^{14} - p^{37} T^{15} + p^{40} T^{16} \)
11 \( 1 - 417 T + 587110 T^{2} - 241885351 T^{3} + 209581109293 T^{4} - 73451435042440 T^{5} + 52148924854242706 T^{6} - 16271844647130225922 T^{7} + \)\(94\!\cdots\!20\)\( T^{8} - 16271844647130225922 p^{5} T^{9} + 52148924854242706 p^{10} T^{10} - 73451435042440 p^{15} T^{11} + 209581109293 p^{20} T^{12} - 241885351 p^{25} T^{13} + 587110 p^{30} T^{14} - 417 p^{35} T^{15} + p^{40} T^{16} \)
13 \( 1 - 417 T + 121871 p T^{2} - 363973890 T^{3} + 858799103807 T^{4} + 86357765917825 T^{5} + 129969600793026643 T^{6} + \)\(19\!\cdots\!10\)\( T^{7} - \)\(16\!\cdots\!80\)\( T^{8} + \)\(19\!\cdots\!10\)\( p^{5} T^{9} + 129969600793026643 p^{10} T^{10} + 86357765917825 p^{15} T^{11} + 858799103807 p^{20} T^{12} - 363973890 p^{25} T^{13} + 121871 p^{31} T^{14} - 417 p^{35} T^{15} + p^{40} T^{16} \)
17 \( 1 - 1368 T + 5749586 T^{2} - 4710601024 T^{3} + 13073750197105 T^{4} - 4275007198510672 T^{5} + 16088090184245837902 T^{6} + \)\(46\!\cdots\!00\)\( T^{7} + \)\(17\!\cdots\!32\)\( T^{8} + \)\(46\!\cdots\!00\)\( p^{5} T^{9} + 16088090184245837902 p^{10} T^{10} - 4275007198510672 p^{15} T^{11} + 13073750197105 p^{20} T^{12} - 4710601024 p^{25} T^{13} + 5749586 p^{30} T^{14} - 1368 p^{35} T^{15} + p^{40} T^{16} \)
19 \( 1 - 2999 T + 14161094 T^{2} - 30761082649 T^{3} + 84014349690045 T^{4} - 141932777966284696 T^{5} + \)\(29\!\cdots\!50\)\( T^{6} - \)\(42\!\cdots\!10\)\( T^{7} + \)\(78\!\cdots\!00\)\( T^{8} - \)\(42\!\cdots\!10\)\( p^{5} T^{9} + \)\(29\!\cdots\!50\)\( p^{10} T^{10} - 141932777966284696 p^{15} T^{11} + 84014349690045 p^{20} T^{12} - 30761082649 p^{25} T^{13} + 14161094 p^{30} T^{14} - 2999 p^{35} T^{15} + p^{40} T^{16} \)
29 \( 1 - 4769 T + 91625968 T^{2} - 495266084049 T^{3} + 4857658992131293 T^{4} - 23235042588991975216 T^{5} + \)\(17\!\cdots\!22\)\( T^{6} - \)\(24\!\cdots\!94\)\( p T^{7} + \)\(41\!\cdots\!52\)\( T^{8} - \)\(24\!\cdots\!94\)\( p^{6} T^{9} + \)\(17\!\cdots\!22\)\( p^{10} T^{10} - 23235042588991975216 p^{15} T^{11} + 4857658992131293 p^{20} T^{12} - 495266084049 p^{25} T^{13} + 91625968 p^{30} T^{14} - 4769 p^{35} T^{15} + p^{40} T^{16} \)
31 \( 1 - 4656 T + 26965802 T^{2} - 104126739332 T^{3} + 1048062152552553 T^{4} - 11670864482679066992 T^{5} + \)\(61\!\cdots\!66\)\( T^{6} - \)\(24\!\cdots\!80\)\( T^{7} + \)\(10\!\cdots\!36\)\( T^{8} - \)\(24\!\cdots\!80\)\( p^{5} T^{9} + \)\(61\!\cdots\!66\)\( p^{10} T^{10} - 11670864482679066992 p^{15} T^{11} + 1048062152552553 p^{20} T^{12} - 104126739332 p^{25} T^{13} + 26965802 p^{30} T^{14} - 4656 p^{35} T^{15} + p^{40} T^{16} \)
37 \( 1 - 12289 T + 367904284 T^{2} - 4307889626053 T^{3} + 71974200329606137 T^{4} - \)\(71\!\cdots\!24\)\( T^{5} + \)\(88\!\cdots\!10\)\( T^{6} - \)\(74\!\cdots\!82\)\( T^{7} + \)\(73\!\cdots\!76\)\( T^{8} - \)\(74\!\cdots\!82\)\( p^{5} T^{9} + \)\(88\!\cdots\!10\)\( p^{10} T^{10} - \)\(71\!\cdots\!24\)\( p^{15} T^{11} + 71974200329606137 p^{20} T^{12} - 4307889626053 p^{25} T^{13} + 367904284 p^{30} T^{14} - 12289 p^{35} T^{15} + p^{40} T^{16} \)
41 \( 1 - 4768 T + 585982429 T^{2} - 2323431561260 T^{3} + 171224134471420521 T^{4} - \)\(57\!\cdots\!60\)\( T^{5} + \)\(32\!\cdots\!34\)\( T^{6} - \)\(93\!\cdots\!48\)\( T^{7} + \)\(43\!\cdots\!02\)\( T^{8} - \)\(93\!\cdots\!48\)\( p^{5} T^{9} + \)\(32\!\cdots\!34\)\( p^{10} T^{10} - \)\(57\!\cdots\!60\)\( p^{15} T^{11} + 171224134471420521 p^{20} T^{12} - 2323431561260 p^{25} T^{13} + 585982429 p^{30} T^{14} - 4768 p^{35} T^{15} + p^{40} T^{16} \)
43 \( 1 - 34975 T + 1145641249 T^{2} - 27042225365784 T^{3} + 564275372040848393 T^{4} - \)\(99\!\cdots\!11\)\( T^{5} + \)\(15\!\cdots\!51\)\( T^{6} - \)\(22\!\cdots\!26\)\( T^{7} + \)\(28\!\cdots\!96\)\( T^{8} - \)\(22\!\cdots\!26\)\( p^{5} T^{9} + \)\(15\!\cdots\!51\)\( p^{10} T^{10} - \)\(99\!\cdots\!11\)\( p^{15} T^{11} + 564275372040848393 p^{20} T^{12} - 27042225365784 p^{25} T^{13} + 1145641249 p^{30} T^{14} - 34975 p^{35} T^{15} + p^{40} T^{16} \)
47 \( 1 - 16500 T + 1213937815 T^{2} - 21705286928044 T^{3} + 746478606038127350 T^{4} - \)\(12\!\cdots\!36\)\( T^{5} + \)\(29\!\cdots\!85\)\( T^{6} - \)\(43\!\cdots\!88\)\( T^{7} + \)\(82\!\cdots\!98\)\( T^{8} - \)\(43\!\cdots\!88\)\( p^{5} T^{9} + \)\(29\!\cdots\!85\)\( p^{10} T^{10} - \)\(12\!\cdots\!36\)\( p^{15} T^{11} + 746478606038127350 p^{20} T^{12} - 21705286928044 p^{25} T^{13} + 1213937815 p^{30} T^{14} - 16500 p^{35} T^{15} + p^{40} T^{16} \)
53 \( 1 - 60747 T + 3923170693 T^{2} - 157023957872538 T^{3} + 6059711226271328265 T^{4} - \)\(18\!\cdots\!33\)\( T^{5} + \)\(51\!\cdots\!87\)\( T^{6} - \)\(12\!\cdots\!66\)\( T^{7} + \)\(27\!\cdots\!32\)\( T^{8} - \)\(12\!\cdots\!66\)\( p^{5} T^{9} + \)\(51\!\cdots\!87\)\( p^{10} T^{10} - \)\(18\!\cdots\!33\)\( p^{15} T^{11} + 6059711226271328265 p^{20} T^{12} - 157023957872538 p^{25} T^{13} + 3923170693 p^{30} T^{14} - 60747 p^{35} T^{15} + p^{40} T^{16} \)
59 \( 1 - 50613 T + 4378330591 T^{2} - 160030114608544 T^{3} + 7495498513675883171 T^{4} - \)\(20\!\cdots\!17\)\( T^{5} + \)\(71\!\cdots\!43\)\( T^{6} - \)\(16\!\cdots\!46\)\( T^{7} + \)\(52\!\cdots\!64\)\( T^{8} - \)\(16\!\cdots\!46\)\( p^{5} T^{9} + \)\(71\!\cdots\!43\)\( p^{10} T^{10} - \)\(20\!\cdots\!17\)\( p^{15} T^{11} + 7495498513675883171 p^{20} T^{12} - 160030114608544 p^{25} T^{13} + 4378330591 p^{30} T^{14} - 50613 p^{35} T^{15} + p^{40} T^{16} \)
61 \( 1 - 55269 T + 5349010003 T^{2} - 221463462475638 T^{3} + 12463194772267450495 T^{4} - \)\(40\!\cdots\!35\)\( T^{5} + \)\(17\!\cdots\!75\)\( T^{6} - \)\(47\!\cdots\!54\)\( T^{7} + \)\(17\!\cdots\!24\)\( T^{8} - \)\(47\!\cdots\!54\)\( p^{5} T^{9} + \)\(17\!\cdots\!75\)\( p^{10} T^{10} - \)\(40\!\cdots\!35\)\( p^{15} T^{11} + 12463194772267450495 p^{20} T^{12} - 221463462475638 p^{25} T^{13} + 5349010003 p^{30} T^{14} - 55269 p^{35} T^{15} + p^{40} T^{16} \)
67 \( 1 - 84046 T + 10811387951 T^{2} - 658541433944148 T^{3} + 49267398885657393795 T^{4} - \)\(23\!\cdots\!76\)\( T^{5} + \)\(12\!\cdots\!37\)\( T^{6} - \)\(49\!\cdots\!54\)\( T^{7} + \)\(21\!\cdots\!72\)\( T^{8} - \)\(49\!\cdots\!54\)\( p^{5} T^{9} + \)\(12\!\cdots\!37\)\( p^{10} T^{10} - \)\(23\!\cdots\!76\)\( p^{15} T^{11} + 49267398885657393795 p^{20} T^{12} - 658541433944148 p^{25} T^{13} + 10811387951 p^{30} T^{14} - 84046 p^{35} T^{15} + p^{40} T^{16} \)
71 \( 1 - 60760 T + 9094534379 T^{2} - 401265948044864 T^{3} + 36497992942580005451 T^{4} - \)\(13\!\cdots\!58\)\( T^{5} + \)\(10\!\cdots\!41\)\( T^{6} - \)\(33\!\cdots\!98\)\( T^{7} + \)\(21\!\cdots\!36\)\( T^{8} - \)\(33\!\cdots\!98\)\( p^{5} T^{9} + \)\(10\!\cdots\!41\)\( p^{10} T^{10} - \)\(13\!\cdots\!58\)\( p^{15} T^{11} + 36497992942580005451 p^{20} T^{12} - 401265948044864 p^{25} T^{13} + 9094534379 p^{30} T^{14} - 60760 p^{35} T^{15} + p^{40} T^{16} \)
73 \( 1 - 97008 T + 9224855142 T^{2} - 722353685293132 T^{3} + 49155648698629925389 T^{4} - \)\(30\!\cdots\!84\)\( T^{5} + \)\(16\!\cdots\!70\)\( T^{6} - \)\(86\!\cdots\!68\)\( T^{7} + \)\(41\!\cdots\!84\)\( T^{8} - \)\(86\!\cdots\!68\)\( p^{5} T^{9} + \)\(16\!\cdots\!70\)\( p^{10} T^{10} - \)\(30\!\cdots\!84\)\( p^{15} T^{11} + 49155648698629925389 p^{20} T^{12} - 722353685293132 p^{25} T^{13} + 9224855142 p^{30} T^{14} - 97008 p^{35} T^{15} + p^{40} T^{16} \)
79 \( 1 - 60570 T + 20702450286 T^{2} - 1163134940668850 T^{3} + \)\(19\!\cdots\!41\)\( T^{4} - \)\(98\!\cdots\!36\)\( T^{5} + \)\(11\!\cdots\!54\)\( T^{6} - \)\(48\!\cdots\!56\)\( T^{7} + \)\(42\!\cdots\!56\)\( T^{8} - \)\(48\!\cdots\!56\)\( p^{5} T^{9} + \)\(11\!\cdots\!54\)\( p^{10} T^{10} - \)\(98\!\cdots\!36\)\( p^{15} T^{11} + \)\(19\!\cdots\!41\)\( p^{20} T^{12} - 1163134940668850 p^{25} T^{13} + 20702450286 p^{30} T^{14} - 60570 p^{35} T^{15} + p^{40} T^{16} \)
83 \( 1 - 217526 T + 42040470434 T^{2} - 5516603184179930 T^{3} + \)\(64\!\cdots\!25\)\( T^{4} - \)\(61\!\cdots\!92\)\( T^{5} + \)\(52\!\cdots\!14\)\( T^{6} - \)\(39\!\cdots\!04\)\( T^{7} + \)\(26\!\cdots\!88\)\( T^{8} - \)\(39\!\cdots\!04\)\( p^{5} T^{9} + \)\(52\!\cdots\!14\)\( p^{10} T^{10} - \)\(61\!\cdots\!92\)\( p^{15} T^{11} + \)\(64\!\cdots\!25\)\( p^{20} T^{12} - 5516603184179930 p^{25} T^{13} + 42040470434 p^{30} T^{14} - 217526 p^{35} T^{15} + p^{40} T^{16} \)
89 \( 1 - 123662 T + 25576799231 T^{2} - 2554276048544792 T^{3} + \)\(30\!\cdots\!43\)\( T^{4} - \)\(24\!\cdots\!68\)\( T^{5} + \)\(22\!\cdots\!45\)\( T^{6} - \)\(15\!\cdots\!82\)\( T^{7} + \)\(13\!\cdots\!60\)\( T^{8} - \)\(15\!\cdots\!82\)\( p^{5} T^{9} + \)\(22\!\cdots\!45\)\( p^{10} T^{10} - \)\(24\!\cdots\!68\)\( p^{15} T^{11} + \)\(30\!\cdots\!43\)\( p^{20} T^{12} - 2554276048544792 p^{25} T^{13} + 25576799231 p^{30} T^{14} - 123662 p^{35} T^{15} + p^{40} T^{16} \)
97 \( 1 - 234159 T + 68604511148 T^{2} - 10865905327445383 T^{3} + \)\(18\!\cdots\!13\)\( T^{4} - \)\(22\!\cdots\!48\)\( T^{5} + \)\(29\!\cdots\!74\)\( T^{6} - \)\(29\!\cdots\!54\)\( T^{7} + \)\(30\!\cdots\!68\)\( T^{8} - \)\(29\!\cdots\!54\)\( p^{5} T^{9} + \)\(29\!\cdots\!74\)\( p^{10} T^{10} - \)\(22\!\cdots\!48\)\( p^{15} T^{11} + \)\(18\!\cdots\!13\)\( p^{20} T^{12} - 10865905327445383 p^{25} T^{13} + 68604511148 p^{30} T^{14} - 234159 p^{35} T^{15} + p^{40} T^{16} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{16} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−3.50476059197048597949280321367, −3.34922267478083548079232404356, −3.29210764272471999032740952950, −3.26144662310196191721228063912, −3.03126312386852922710494088773, −2.99656728283545592370257428163, −2.98531451262304957844014633837, −2.79926401197936699190421608223, −2.78087176930597757344322612725, −2.27473339425136845558731334980, −2.21760563570991726150087338439, −2.19899041382664532164392110721, −2.16138063722325810412071543539, −2.06867383825199929897216929666, −2.03651037908556629654463638124, −1.91283734602791617739083004449, −1.91257965719769744265893687641, −1.19049043200422413168506919877, −1.02315182736036750620293144194, −0.952040127132461507412769071793, −0.925024569968013861088821466717, −0.810206325882152570340577392220, −0.72534203372753880444180382793, −0.68062583630910161005285314620, −0.53824400039432670648701633094, 0.53824400039432670648701633094, 0.68062583630910161005285314620, 0.72534203372753880444180382793, 0.810206325882152570340577392220, 0.925024569968013861088821466717, 0.952040127132461507412769071793, 1.02315182736036750620293144194, 1.19049043200422413168506919877, 1.91257965719769744265893687641, 1.91283734602791617739083004449, 2.03651037908556629654463638124, 2.06867383825199929897216929666, 2.16138063722325810412071543539, 2.19899041382664532164392110721, 2.21760563570991726150087338439, 2.27473339425136845558731334980, 2.78087176930597757344322612725, 2.79926401197936699190421608223, 2.98531451262304957844014633837, 2.99656728283545592370257428163, 3.03126312386852922710494088773, 3.26144662310196191721228063912, 3.29210764272471999032740952950, 3.34922267478083548079232404356, 3.50476059197048597949280321367

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.