L(s) = 1 | − 5·4-s + 2·13-s + 9·16-s + 20·19-s − 19·25-s + 10·31-s + 18·37-s + 28·43-s − 26·49-s − 10·52-s + 54·61-s − 10·64-s + 38·67-s − 16·73-s − 100·76-s + 14·79-s − 6·97-s + 95·100-s − 14·103-s + 2·109-s − 34·121-s − 50·124-s + 127-s + 131-s + 137-s + 139-s − 90·148-s + ⋯ |
L(s) = 1 | − 5/2·4-s + 0.554·13-s + 9/4·16-s + 4.58·19-s − 3.79·25-s + 1.79·31-s + 2.95·37-s + 4.26·43-s − 3.71·49-s − 1.38·52-s + 6.91·61-s − 5/4·64-s + 4.64·67-s − 1.87·73-s − 11.4·76-s + 1.57·79-s − 0.609·97-s + 19/2·100-s − 1.37·103-s + 0.191·109-s − 3.09·121-s − 4.49·124-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 7.39·148-s + ⋯ |
Λ(s)=(=((316⋅2916)s/2ΓC(s)8L(s)Λ(2−s)
Λ(s)=(=((316⋅2916)s/2ΓC(s+1/2)8L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
18.52657253 |
L(21) |
≈ |
18.52657253 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 29 | 1 |
good | 2 | 1+5T2+p4T4+45T6+101T8+45p2T10+p8T12+5p6T14+p8T16 |
| 5 | 1+19T2+191T4+1429T6+8256T8+1429p2T10+191p4T12+19p6T14+p8T16 |
| 7 | (1+13T2+20T3+89T4+20pT5+13p2T6+p4T8)2 |
| 11 | 1+34T2+645T4+8726T6+9004pT8+8726p2T10+645p4T12+34p6T14+p8T16 |
| 13 | (1−T+38T2−30T3+651T4−30pT5+38p2T6−p3T7+p4T8)2 |
| 17 | 1+52T2+1460T4+30092T6+527254T8+30092p2T10+1460p4T12+52p6T14+p8T16 |
| 19 | (1−5T+43T2−5pT3+p2T4)4 |
| 23 | 1+35T2+1571T4+39685T6+1089016T8+39685p2T10+1571p4T12+35p6T14+p8T16 |
| 31 | (1−5T+114T2−460T3+5151T4−460pT5+114p2T6−5p3T7+p4T8)2 |
| 37 | (1−9T+109T2−673T3+5324T4−673pT5+109p2T6−9p3T7+p4T8)2 |
| 41 | 1+162T2+14413T4+889934T6+41235380T8+889934p2T10+14413p4T12+162p6T14+p8T16 |
| 43 | (1−14T+103T2−960T3+8201T4−960pT5+103p2T6−14p3T7+p4T8)2 |
| 47 | 1+155T2+12331T4+782445T6+41499176T8+782445p2T10+12331p4T12+155p6T14+p8T16 |
| 53 | (1+144T2+10622T4+144p2T6+p4T8)2 |
| 59 | 1+211T2+24975T4+2115569T6+138442424T8+2115569p2T10+24975p4T12+211p6T14+p8T16 |
| 61 | (1−27T+498T2−5874T3+54255T4−5874pT5+498p2T6−27p3T7+p4T8)2 |
| 67 | (1−19T+304T2−2838T3+27239T4−2838pT5+304p2T6−19p3T7+p4T8)2 |
| 71 | 1+103T2+17543T4+1340981T6+130159480T8+1340981p2T10+17543p4T12+103p6T14+p8T16 |
| 73 | (1+8T+131T2+1094T3+14619T4+1094pT5+131p2T6+8p3T7+p4T8)2 |
| 79 | (1−7T+220T2−1272T3+24269T4−1272pT5+220p2T6−7p3T7+p4T8)2 |
| 83 | 1+138T2+19885T4+1799198T6+178905044T8+1799198p2T10+19885p4T12+138p6T14+p8T16 |
| 89 | 1+438T2+93973T4+13385366T6+1386133340T8+13385366p2T10+93973p4T12+438p6T14+p8T16 |
| 97 | (1+3T+167T2+5pT3+18096T4+5p2T5+167p2T6+3p3T7+p4T8)2 |
show more | |
show less | |
L(s)=p∏ j=1∏16(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−3.25587017742218836587592774088, −3.01436607424833740306909198472, −2.98456094925968581543986238385, −2.94787983822079500233073119316, −2.78854821328600252291656389107, −2.65278016016051110062197805639, −2.49313691594091675791613929423, −2.43831319009164804275880040193, −2.35267056768649447646175877615, −2.29529959927873990136212201101, −2.23701910420667289000917495422, −1.79545310967620180218745117614, −1.70924272134575210928263780891, −1.68973857248096997756552697184, −1.67368061418384315615505288318, −1.52832090849494420631448839289, −1.32718891362557278936359078297, −1.00693681199066280822759296783, −0.891200533339698870697225726519, −0.797915353672243560754955172632, −0.74042989821156927320148775086, −0.61915879484559102634809750169, −0.54797940048731320516837461728, −0.51927517703419244216967404636, −0.24122970998436824536408134927,
0.24122970998436824536408134927, 0.51927517703419244216967404636, 0.54797940048731320516837461728, 0.61915879484559102634809750169, 0.74042989821156927320148775086, 0.797915353672243560754955172632, 0.891200533339698870697225726519, 1.00693681199066280822759296783, 1.32718891362557278936359078297, 1.52832090849494420631448839289, 1.67368061418384315615505288318, 1.68973857248096997756552697184, 1.70924272134575210928263780891, 1.79545310967620180218745117614, 2.23701910420667289000917495422, 2.29529959927873990136212201101, 2.35267056768649447646175877615, 2.43831319009164804275880040193, 2.49313691594091675791613929423, 2.65278016016051110062197805639, 2.78854821328600252291656389107, 2.94787983822079500233073119316, 2.98456094925968581543986238385, 3.01436607424833740306909198472, 3.25587017742218836587592774088
Plot not available for L-functions of degree greater than 10.