Properties

Label 16-6336e8-1.1-c1e8-0-2
Degree $16$
Conductor $2.597\times 10^{30}$
Sign $1$
Analytic cond. $4.29277\times 10^{13}$
Root an. cond. $7.11289$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 24·17-s + 8·29-s − 32·37-s + 24·41-s + 24·49-s + 64·97-s − 40·101-s − 12·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 72·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + ⋯
L(s)  = 1  − 5.82·17-s + 1.48·29-s − 5.26·37-s + 3.74·41-s + 24/7·49-s + 6.49·97-s − 3.98·101-s − 1.09·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 5.53·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + 0.0712·197-s + 0.0708·199-s + 0.0688·211-s + 0.0669·223-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{48} \cdot 3^{16} \cdot 11^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{48} \cdot 3^{16} \cdot 11^{8}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(16\)
Conductor: \(2^{48} \cdot 3^{16} \cdot 11^{8}\)
Sign: $1$
Analytic conductor: \(4.29277\times 10^{13}\)
Root analytic conductor: \(7.11289\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((16,\ 2^{48} \cdot 3^{16} \cdot 11^{8} ,\ ( \ : [1/2]^{8} ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(0.1134677801\)
\(L(\frac12)\) \(\approx\) \(0.1134677801\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
11 \( 1 + 12 T^{2} + 18 p T^{4} + 12 p^{2} T^{6} + p^{4} T^{8} \)
good5 \( ( 1 + p^{2} T^{4} )^{4} \)
7 \( ( 1 - 12 T^{2} + 114 T^{4} - 12 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
13 \( ( 1 - 18 T^{2} + p^{2} T^{4} )^{4} \)
17 \( ( 1 + 6 T + 38 T^{2} + 6 p T^{3} + p^{2} T^{4} )^{4} \)
19 \( ( 1 - 12 T^{2} - 222 T^{4} - 12 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
23 \( ( 1 - 28 T^{2} + 934 T^{4} - 28 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
29 \( ( 1 - 2 T + 54 T^{2} - 2 p T^{3} + p^{2} T^{4} )^{4} \)
31 \( ( 1 + 12 T^{2} + 1638 T^{4} + 12 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
37 \( ( 1 + 4 T + p T^{2} )^{8} \)
41 \( ( 1 - 6 T + 46 T^{2} - 6 p T^{3} + p^{2} T^{4} )^{4} \)
43 \( ( 1 - 108 T^{2} + 5634 T^{4} - 108 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
47 \( ( 1 - 52 T^{2} + 1174 T^{4} - 52 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
53 \( ( 1 - 128 T^{2} + 8434 T^{4} - 128 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
59 \( ( 1 - 180 T^{2} + 14982 T^{4} - 180 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
61 \( ( 1 - 28 T^{2} + 3718 T^{4} - 28 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
67 \( ( 1 + 60 T^{2} + 1878 T^{4} + 60 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
71 \( ( 1 - 180 T^{2} + 16182 T^{4} - 180 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
73 \( ( 1 - 268 T^{2} + 28534 T^{4} - 268 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
79 \( ( 1 - 300 T^{2} + 34962 T^{4} - 300 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
83 \( ( 1 + 60 T^{2} - 1002 T^{4} + 60 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
89 \( ( 1 - 80 T^{2} + 1762 T^{4} - 80 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
97 \( ( 1 - 16 T + 238 T^{2} - 16 p T^{3} + p^{2} T^{4} )^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{16} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−3.27728839053281319950026016814, −3.09052656345057729800228283834, −3.07106121194464277738174569271, −3.01512550286943919345457047382, −2.70164362831262705570292965601, −2.69234981066813287524978314074, −2.57910131223819410852251817429, −2.37739998517634033256243486947, −2.27737172444223649871619690968, −2.24045898431578007752262110741, −2.15210460816113704039598399570, −2.03737680998383219327705247699, −2.01883492830269149959977992307, −1.92745864124829816985089857774, −1.79697620963680959448450087350, −1.57983618096484909683600594343, −1.45389434747232904409217175391, −1.06160512900123811389989176312, −0.998267327725308075125694744810, −0.987907645398218270747670208900, −0.948105107857137971670927376151, −0.63501072256218107168617347696, −0.33851343854194891695492669925, −0.26606345660672156553428791596, −0.03645705830444903266975255947, 0.03645705830444903266975255947, 0.26606345660672156553428791596, 0.33851343854194891695492669925, 0.63501072256218107168617347696, 0.948105107857137971670927376151, 0.987907645398218270747670208900, 0.998267327725308075125694744810, 1.06160512900123811389989176312, 1.45389434747232904409217175391, 1.57983618096484909683600594343, 1.79697620963680959448450087350, 1.92745864124829816985089857774, 2.01883492830269149959977992307, 2.03737680998383219327705247699, 2.15210460816113704039598399570, 2.24045898431578007752262110741, 2.27737172444223649871619690968, 2.37739998517634033256243486947, 2.57910131223819410852251817429, 2.69234981066813287524978314074, 2.70164362831262705570292965601, 3.01512550286943919345457047382, 3.07106121194464277738174569271, 3.09052656345057729800228283834, 3.27728839053281319950026016814

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.