L(s) = 1 | − 36·3-s + 486·9-s − 462·11-s + 1.20e3·13-s − 228·17-s − 358·19-s − 2.14e3·23-s + 3.52e3·25-s − 1.10e4·29-s − 830·31-s + 1.66e4·33-s − 3.91e3·37-s − 4.33e4·39-s + 1.66e4·41-s − 2.90e4·43-s − 4.17e4·47-s + 8.20e3·51-s + 2.21e4·53-s + 1.28e4·57-s − 3.28e4·59-s − 8.37e4·61-s − 8.00e4·67-s + 7.73e4·69-s + 8.95e4·71-s + 2.24e4·73-s − 1.26e5·75-s − 7.52e4·79-s + ⋯ |
L(s) = 1 | − 2.30·3-s + 2·9-s − 1.15·11-s + 1.97·13-s − 0.191·17-s − 0.227·19-s − 0.846·23-s + 1.12·25-s − 2.44·29-s − 0.155·31-s + 2.65·33-s − 0.470·37-s − 4.56·39-s + 1.54·41-s − 2.39·43-s − 2.75·47-s + 0.441·51-s + 1.08·53-s + 0.525·57-s − 1.22·59-s − 2.88·61-s − 2.17·67-s + 1.95·69-s + 2.10·71-s + 0.493·73-s − 2.60·75-s − 1.35·79-s + ⋯ |
Λ(s)=(=((216⋅38⋅716)s/2ΓC(s)8L(s)Λ(6−s)
Λ(s)=(=((216⋅38⋅716)s/2ΓC(s+5/2)8L(s)Λ(1−s)
Particular Values
L(3) |
≈ |
2.254716139 |
L(21) |
≈ |
2.254716139 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | (1+p2T+p4T2)4 |
| 7 | 1 |
good | 5 | 1−3523T2−264p4T3−839647T4+877536p4T5+28930950702T6−1157319768p4T7−62249635398274T8−1157319768p9T9+28930950702p10T10+877536p19T11−839647p20T12−264p29T13−3523p30T14+p40T16 |
| 11 | 1+42pT−55261T2+23882490T3+30394966829T4+4313182607736T5+7711402699001610T6+1745859627280956732T7−81⋯62T8+1745859627280956732p5T9+7711402699001610p10T10+4313182607736p15T11+30394966829p20T12+23882490p25T13−55261p30T14+42p36T15+p40T16 |
| 13 | (1−602T−12679pT2−145984794T3+357680241104T4−145984794p5T5−12679p11T6−602p15T7+p20T8)2 |
| 17 | 1+228T−3817300T2−1812530376T3+7723728660698T4+3961559277827628T5−9874383121499354160T6−30⋯88T7+11⋯63T8−30⋯88p5T9−9874383121499354160p10T10+3961559277827628p15T11+7723728660698p20T12−1812530376p25T13−3817300p30T14+228p35T15+p40T16 |
| 19 | 1+358T−7237113T2−2935172086T3+28171845756353T4+9461877710293488T5−89100991373462587298T6−10⋯20T7+24⋯42T8−10⋯20p5T9−89100991373462587298p10T10+9461877710293488p15T11+28171845756353p20T12−2935172086p25T13−7237113p30T14+358p35T15+p40T16 |
| 23 | 1+2148T−12238924T2+4077683208T3+128948594947802T4−143919044174116500T5−26075111207770425456pT6+52⋯72T7+18⋯31T8+52⋯72p5T9−26075111207770425456p11T10−143919044174116500p15T11+128948594947802p20T12+4077683208p25T13−12238924p30T14+2148p35T15+p40T16 |
| 29 | (1+5532T+56710687T2+131401968540T3+1151610033241988T4+131401968540p5T5+56710687p10T6+5532p15T7+p20T8)2 |
| 31 | 1+830T−30566692T2+460416975904T3+906611510861135T4−13425215480714328836T5+95⋯40T6+37⋯30T7−27⋯28T8+37⋯30p5T9+95⋯40p10T10−13425215480714328836p15T11+906611510861135p20T12+460416975904p25T13−30566692p30T14+830p35T15+p40T16 |
| 37 | 1+3914T−1798245pT2−1097998070882T3−1825206898694683T4+62220290884192688868T5+62⋯66T6−11⋯88T7−46⋯38T8−11⋯88p5T9+62⋯66p10T10+62220290884192688868p15T11−1825206898694683p20T12−1097998070882p25T13−1798245p31T14+3914p35T15+p40T16 |
| 41 | (1−8316T+131719112T2+1793338464780T3−11507939827736466T4+1793338464780p5T5+131719112p10T6−8316p15T7+p20T8)2 |
| 43 | (1+14518T+553805833T2+5594375858722T3+119245786138973608T4+5594375858722p5T5+553805833p10T6+14518p15T7+p20T8)2 |
| 47 | 1+41700T+537485524T2+6358172548200T3+162169996689714634T4+49⋯00T5−48⋯44T6−17⋯00pT7−10⋯61T8−17⋯00p6T9−48⋯44p10T10+49⋯00p15T11+162169996689714634p20T12+6358172548200p25T13+537485524p30T14+41700p35T15+p40T16 |
| 53 | 1−22164T−121257815T2−31884451303188T3+713358687755937853T4+34⋯36T5+46⋯10T6−99⋯24T7−41⋯02T8−99⋯24p5T9+46⋯10p10T10+34⋯36p15T11+713358687755937853p20T12−31884451303188p25T13−121257815p30T14−22164p35T15+p40T16 |
| 59 | 1+32886T−1083783697T2−35352420196734T3+734569909452509033T4+86⋯92T5−96⋯02T6+76⋯28T7+95⋯14T8+76⋯28p5T9−96⋯02p10T10+86⋯92p15T11+734569909452509033p20T12−35352420196734p25T13−1083783697p30T14+32886p35T15+p40T16 |
| 61 | 1+83732T+1872200780T2+2539765176280T3+1308252811325909786T4+75⋯52T5+99⋯48T6+38⋯36T7+21⋯19T8+38⋯36p5T9+99⋯48p10T10+75⋯52p15T11+1308252811325909786p20T12+2539765176280p25T13+1872200780p30T14+83732p35T15+p40T16 |
| 67 | 1+80034T+295144795T2−67594226392002T3+2776430208831340477T4+10⋯48T5−54⋯94T6−84⋯88T7+64⋯82T8−84⋯88p5T9−54⋯94p10T10+10⋯48p15T11+2776430208831340477p20T12−67594226392002p25T13+295144795p30T14+80034p35T15+p40T16 |
| 71 | (1−44772T+5603702956T2−219545846683812T3+14130153190557486902T4−219545846683812p5T5+5603702956p10T6−44772p15T7+p20T8)2 |
| 73 | 1−22470T−3227884709T2−55184471402730T3+5281219798633591705T4+29⋯40T5+52⋯98T6−45⋯60T7−39⋯94T8−45⋯60p5T9+52⋯98p10T10+29⋯40p15T11+5281219798633591705p20T12−55184471402730p25T13−3227884709p30T14−22470p35T15+p40T16 |
| 79 | 1+75286T−4589904580T2−271785361643200T3+23588797479279670751T4+58⋯56T5−88⋯28T6−13⋯78T7+19⋯84T8−13⋯78p5T9−88⋯28p10T10+58⋯56p15T11+23588797479279670751p20T12−271785361643200p25T13−4589904580p30T14+75286p35T15+p40T16 |
| 83 | (1−17418T+11662792993T2−252243184391142T3+61381737302005449608T4−252243184391142p5T5+11662792993p10T6−17418p15T7+p20T8)2 |
| 89 | 1+28944T−4147498688T2−127105851999456T3+27498803712269304034T4+18⋯24T5+34⋯76T6+10⋯68T7−15⋯29T8+10⋯68p5T9+34⋯76p10T10+18⋯24p15T11+27498803712269304034p20T12−127105851999456p25T13−4147498688p30T14+28944p35T15+p40T16 |
| 97 | (1−216678T+43602999305T2−4974916579453302T3+56⋯00T4−4974916579453302p5T5+43602999305p10T6−216678p15T7+p20T8)2 |
show more | |
show less | |
L(s)=p∏ j=1∏16(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−3.78725611736600871477000197084, −3.40804613057975487160854921369, −3.39228616223431254588499237447, −3.38470857199495160400649404749, −3.38358124510480296654621372773, −3.22921224745443967011301324273, −3.11286854645197789354337787934, −3.09511539833759666465238796610, −2.68181713973450480556465538386, −2.30236535280910748664620517995, −2.27216269510107732894365325685, −2.25282808466384982199113150622, −1.93353275365786013877437808135, −1.78406034225996911245922485760, −1.75796981814511933371357216513, −1.66493122688237954049324871011, −1.46324361554790387047470707127, −1.26700399564779224186915229426, −0.937635321912667336934340148633, −0.76584839327575808548131041259, −0.70568049398851539419256735121, −0.51533397506853286279368896396, −0.44926658143144563230536709623, −0.26767343996333052369294636123, −0.16350537271178732751894324320,
0.16350537271178732751894324320, 0.26767343996333052369294636123, 0.44926658143144563230536709623, 0.51533397506853286279368896396, 0.70568049398851539419256735121, 0.76584839327575808548131041259, 0.937635321912667336934340148633, 1.26700399564779224186915229426, 1.46324361554790387047470707127, 1.66493122688237954049324871011, 1.75796981814511933371357216513, 1.78406034225996911245922485760, 1.93353275365786013877437808135, 2.25282808466384982199113150622, 2.27216269510107732894365325685, 2.30236535280910748664620517995, 2.68181713973450480556465538386, 3.09511539833759666465238796610, 3.11286854645197789354337787934, 3.22921224745443967011301324273, 3.38358124510480296654621372773, 3.38470857199495160400649404749, 3.39228616223431254588499237447, 3.40804613057975487160854921369, 3.78725611736600871477000197084
Plot not available for L-functions of degree greater than 10.