L(s) = 1 | − 36·3-s + 486·9-s − 462·11-s + 1.20e3·13-s − 228·17-s − 358·19-s − 2.14e3·23-s + 3.52e3·25-s − 1.10e4·29-s − 830·31-s + 1.66e4·33-s − 3.91e3·37-s − 4.33e4·39-s + 1.66e4·41-s − 2.90e4·43-s − 4.17e4·47-s + 8.20e3·51-s + 2.21e4·53-s + 1.28e4·57-s − 3.28e4·59-s − 8.37e4·61-s − 8.00e4·67-s + 7.73e4·69-s + 8.95e4·71-s + 2.24e4·73-s − 1.26e5·75-s − 7.52e4·79-s + ⋯ |
L(s) = 1 | − 2.30·3-s + 2·9-s − 1.15·11-s + 1.97·13-s − 0.191·17-s − 0.227·19-s − 0.846·23-s + 1.12·25-s − 2.44·29-s − 0.155·31-s + 2.65·33-s − 0.470·37-s − 4.56·39-s + 1.54·41-s − 2.39·43-s − 2.75·47-s + 0.441·51-s + 1.08·53-s + 0.525·57-s − 1.22·59-s − 2.88·61-s − 2.17·67-s + 1.95·69-s + 2.10·71-s + 0.493·73-s − 2.60·75-s − 1.35·79-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{8} \cdot 7^{16}\right)^{s/2} \, \Gamma_{\C}(s)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(6-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{8} \cdot 7^{16}\right)^{s/2} \, \Gamma_{\C}(s+5/2)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
Particular Values
\(L(3)\) |
\(\approx\) |
\(2.254716139\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.254716139\) |
\(L(\frac{7}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( ( 1 + p^{2} T + p^{4} T^{2} )^{4} \) |
| 7 | \( 1 \) |
good | 5 | \( 1 - 3523 T^{2} - 264 p^{4} T^{3} - 839647 T^{4} + 877536 p^{4} T^{5} + 28930950702 T^{6} - 1157319768 p^{4} T^{7} - 62249635398274 T^{8} - 1157319768 p^{9} T^{9} + 28930950702 p^{10} T^{10} + 877536 p^{19} T^{11} - 839647 p^{20} T^{12} - 264 p^{29} T^{13} - 3523 p^{30} T^{14} + p^{40} T^{16} \) |
| 11 | \( 1 + 42 p T - 55261 T^{2} + 23882490 T^{3} + 30394966829 T^{4} + 4313182607736 T^{5} + 7711402699001610 T^{6} + 1745859627280956732 T^{7} - \)\(81\!\cdots\!62\)\( T^{8} + 1745859627280956732 p^{5} T^{9} + 7711402699001610 p^{10} T^{10} + 4313182607736 p^{15} T^{11} + 30394966829 p^{20} T^{12} + 23882490 p^{25} T^{13} - 55261 p^{30} T^{14} + 42 p^{36} T^{15} + p^{40} T^{16} \) |
| 13 | \( ( 1 - 602 T - 12679 p T^{2} - 145984794 T^{3} + 357680241104 T^{4} - 145984794 p^{5} T^{5} - 12679 p^{11} T^{6} - 602 p^{15} T^{7} + p^{20} T^{8} )^{2} \) |
| 17 | \( 1 + 228 T - 3817300 T^{2} - 1812530376 T^{3} + 7723728660698 T^{4} + 3961559277827628 T^{5} - 9874383121499354160 T^{6} - \)\(30\!\cdots\!88\)\( T^{7} + \)\(11\!\cdots\!63\)\( T^{8} - \)\(30\!\cdots\!88\)\( p^{5} T^{9} - 9874383121499354160 p^{10} T^{10} + 3961559277827628 p^{15} T^{11} + 7723728660698 p^{20} T^{12} - 1812530376 p^{25} T^{13} - 3817300 p^{30} T^{14} + 228 p^{35} T^{15} + p^{40} T^{16} \) |
| 19 | \( 1 + 358 T - 7237113 T^{2} - 2935172086 T^{3} + 28171845756353 T^{4} + 9461877710293488 T^{5} - 89100991373462587298 T^{6} - \)\(10\!\cdots\!20\)\( T^{7} + \)\(24\!\cdots\!42\)\( T^{8} - \)\(10\!\cdots\!20\)\( p^{5} T^{9} - 89100991373462587298 p^{10} T^{10} + 9461877710293488 p^{15} T^{11} + 28171845756353 p^{20} T^{12} - 2935172086 p^{25} T^{13} - 7237113 p^{30} T^{14} + 358 p^{35} T^{15} + p^{40} T^{16} \) |
| 23 | \( 1 + 2148 T - 12238924 T^{2} + 4077683208 T^{3} + 128948594947802 T^{4} - 143919044174116500 T^{5} - 26075111207770425456 p T^{6} + \)\(52\!\cdots\!72\)\( T^{7} + \)\(18\!\cdots\!31\)\( T^{8} + \)\(52\!\cdots\!72\)\( p^{5} T^{9} - 26075111207770425456 p^{11} T^{10} - 143919044174116500 p^{15} T^{11} + 128948594947802 p^{20} T^{12} + 4077683208 p^{25} T^{13} - 12238924 p^{30} T^{14} + 2148 p^{35} T^{15} + p^{40} T^{16} \) |
| 29 | \( ( 1 + 5532 T + 56710687 T^{2} + 131401968540 T^{3} + 1151610033241988 T^{4} + 131401968540 p^{5} T^{5} + 56710687 p^{10} T^{6} + 5532 p^{15} T^{7} + p^{20} T^{8} )^{2} \) |
| 31 | \( 1 + 830 T - 30566692 T^{2} + 460416975904 T^{3} + 906611510861135 T^{4} - 13425215480714328836 T^{5} + \)\(95\!\cdots\!40\)\( T^{6} + \)\(37\!\cdots\!30\)\( T^{7} - \)\(27\!\cdots\!28\)\( T^{8} + \)\(37\!\cdots\!30\)\( p^{5} T^{9} + \)\(95\!\cdots\!40\)\( p^{10} T^{10} - 13425215480714328836 p^{15} T^{11} + 906611510861135 p^{20} T^{12} + 460416975904 p^{25} T^{13} - 30566692 p^{30} T^{14} + 830 p^{35} T^{15} + p^{40} T^{16} \) |
| 37 | \( 1 + 3914 T - 1798245 p T^{2} - 1097998070882 T^{3} - 1825206898694683 T^{4} + 62220290884192688868 T^{5} + \)\(62\!\cdots\!66\)\( T^{6} - \)\(11\!\cdots\!88\)\( T^{7} - \)\(46\!\cdots\!38\)\( T^{8} - \)\(11\!\cdots\!88\)\( p^{5} T^{9} + \)\(62\!\cdots\!66\)\( p^{10} T^{10} + 62220290884192688868 p^{15} T^{11} - 1825206898694683 p^{20} T^{12} - 1097998070882 p^{25} T^{13} - 1798245 p^{31} T^{14} + 3914 p^{35} T^{15} + p^{40} T^{16} \) |
| 41 | \( ( 1 - 8316 T + 131719112 T^{2} + 1793338464780 T^{3} - 11507939827736466 T^{4} + 1793338464780 p^{5} T^{5} + 131719112 p^{10} T^{6} - 8316 p^{15} T^{7} + p^{20} T^{8} )^{2} \) |
| 43 | \( ( 1 + 14518 T + 553805833 T^{2} + 5594375858722 T^{3} + 119245786138973608 T^{4} + 5594375858722 p^{5} T^{5} + 553805833 p^{10} T^{6} + 14518 p^{15} T^{7} + p^{20} T^{8} )^{2} \) |
| 47 | \( 1 + 41700 T + 537485524 T^{2} + 6358172548200 T^{3} + 162169996689714634 T^{4} + \)\(49\!\cdots\!00\)\( T^{5} - \)\(48\!\cdots\!44\)\( T^{6} - \)\(17\!\cdots\!00\)\( p T^{7} - \)\(10\!\cdots\!61\)\( T^{8} - \)\(17\!\cdots\!00\)\( p^{6} T^{9} - \)\(48\!\cdots\!44\)\( p^{10} T^{10} + \)\(49\!\cdots\!00\)\( p^{15} T^{11} + 162169996689714634 p^{20} T^{12} + 6358172548200 p^{25} T^{13} + 537485524 p^{30} T^{14} + 41700 p^{35} T^{15} + p^{40} T^{16} \) |
| 53 | \( 1 - 22164 T - 121257815 T^{2} - 31884451303188 T^{3} + 713358687755937853 T^{4} + \)\(34\!\cdots\!36\)\( T^{5} + \)\(46\!\cdots\!10\)\( T^{6} - \)\(99\!\cdots\!24\)\( T^{7} - \)\(41\!\cdots\!02\)\( T^{8} - \)\(99\!\cdots\!24\)\( p^{5} T^{9} + \)\(46\!\cdots\!10\)\( p^{10} T^{10} + \)\(34\!\cdots\!36\)\( p^{15} T^{11} + 713358687755937853 p^{20} T^{12} - 31884451303188 p^{25} T^{13} - 121257815 p^{30} T^{14} - 22164 p^{35} T^{15} + p^{40} T^{16} \) |
| 59 | \( 1 + 32886 T - 1083783697 T^{2} - 35352420196734 T^{3} + 734569909452509033 T^{4} + \)\(86\!\cdots\!92\)\( T^{5} - \)\(96\!\cdots\!02\)\( T^{6} + \)\(76\!\cdots\!28\)\( T^{7} + \)\(95\!\cdots\!14\)\( T^{8} + \)\(76\!\cdots\!28\)\( p^{5} T^{9} - \)\(96\!\cdots\!02\)\( p^{10} T^{10} + \)\(86\!\cdots\!92\)\( p^{15} T^{11} + 734569909452509033 p^{20} T^{12} - 35352420196734 p^{25} T^{13} - 1083783697 p^{30} T^{14} + 32886 p^{35} T^{15} + p^{40} T^{16} \) |
| 61 | \( 1 + 83732 T + 1872200780 T^{2} + 2539765176280 T^{3} + 1308252811325909786 T^{4} + \)\(75\!\cdots\!52\)\( T^{5} + \)\(99\!\cdots\!48\)\( T^{6} + \)\(38\!\cdots\!36\)\( T^{7} + \)\(21\!\cdots\!19\)\( T^{8} + \)\(38\!\cdots\!36\)\( p^{5} T^{9} + \)\(99\!\cdots\!48\)\( p^{10} T^{10} + \)\(75\!\cdots\!52\)\( p^{15} T^{11} + 1308252811325909786 p^{20} T^{12} + 2539765176280 p^{25} T^{13} + 1872200780 p^{30} T^{14} + 83732 p^{35} T^{15} + p^{40} T^{16} \) |
| 67 | \( 1 + 80034 T + 295144795 T^{2} - 67594226392002 T^{3} + 2776430208831340477 T^{4} + \)\(10\!\cdots\!48\)\( T^{5} - \)\(54\!\cdots\!94\)\( T^{6} - \)\(84\!\cdots\!88\)\( T^{7} + \)\(64\!\cdots\!82\)\( T^{8} - \)\(84\!\cdots\!88\)\( p^{5} T^{9} - \)\(54\!\cdots\!94\)\( p^{10} T^{10} + \)\(10\!\cdots\!48\)\( p^{15} T^{11} + 2776430208831340477 p^{20} T^{12} - 67594226392002 p^{25} T^{13} + 295144795 p^{30} T^{14} + 80034 p^{35} T^{15} + p^{40} T^{16} \) |
| 71 | \( ( 1 - 44772 T + 5603702956 T^{2} - 219545846683812 T^{3} + 14130153190557486902 T^{4} - 219545846683812 p^{5} T^{5} + 5603702956 p^{10} T^{6} - 44772 p^{15} T^{7} + p^{20} T^{8} )^{2} \) |
| 73 | \( 1 - 22470 T - 3227884709 T^{2} - 55184471402730 T^{3} + 5281219798633591705 T^{4} + \)\(29\!\cdots\!40\)\( T^{5} + \)\(52\!\cdots\!98\)\( T^{6} - \)\(45\!\cdots\!60\)\( T^{7} - \)\(39\!\cdots\!94\)\( T^{8} - \)\(45\!\cdots\!60\)\( p^{5} T^{9} + \)\(52\!\cdots\!98\)\( p^{10} T^{10} + \)\(29\!\cdots\!40\)\( p^{15} T^{11} + 5281219798633591705 p^{20} T^{12} - 55184471402730 p^{25} T^{13} - 3227884709 p^{30} T^{14} - 22470 p^{35} T^{15} + p^{40} T^{16} \) |
| 79 | \( 1 + 75286 T - 4589904580 T^{2} - 271785361643200 T^{3} + 23588797479279670751 T^{4} + \)\(58\!\cdots\!56\)\( T^{5} - \)\(88\!\cdots\!28\)\( T^{6} - \)\(13\!\cdots\!78\)\( T^{7} + \)\(19\!\cdots\!84\)\( T^{8} - \)\(13\!\cdots\!78\)\( p^{5} T^{9} - \)\(88\!\cdots\!28\)\( p^{10} T^{10} + \)\(58\!\cdots\!56\)\( p^{15} T^{11} + 23588797479279670751 p^{20} T^{12} - 271785361643200 p^{25} T^{13} - 4589904580 p^{30} T^{14} + 75286 p^{35} T^{15} + p^{40} T^{16} \) |
| 83 | \( ( 1 - 17418 T + 11662792993 T^{2} - 252243184391142 T^{3} + 61381737302005449608 T^{4} - 252243184391142 p^{5} T^{5} + 11662792993 p^{10} T^{6} - 17418 p^{15} T^{7} + p^{20} T^{8} )^{2} \) |
| 89 | \( 1 + 28944 T - 4147498688 T^{2} - 127105851999456 T^{3} + 27498803712269304034 T^{4} + \)\(18\!\cdots\!24\)\( T^{5} + \)\(34\!\cdots\!76\)\( T^{6} + \)\(10\!\cdots\!68\)\( T^{7} - \)\(15\!\cdots\!29\)\( T^{8} + \)\(10\!\cdots\!68\)\( p^{5} T^{9} + \)\(34\!\cdots\!76\)\( p^{10} T^{10} + \)\(18\!\cdots\!24\)\( p^{15} T^{11} + 27498803712269304034 p^{20} T^{12} - 127105851999456 p^{25} T^{13} - 4147498688 p^{30} T^{14} + 28944 p^{35} T^{15} + p^{40} T^{16} \) |
| 97 | \( ( 1 - 216678 T + 43602999305 T^{2} - 4974916579453302 T^{3} + \)\(56\!\cdots\!00\)\( T^{4} - 4974916579453302 p^{5} T^{5} + 43602999305 p^{10} T^{6} - 216678 p^{15} T^{7} + p^{20} T^{8} )^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{16} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−3.78725611736600871477000197084, −3.40804613057975487160854921369, −3.39228616223431254588499237447, −3.38470857199495160400649404749, −3.38358124510480296654621372773, −3.22921224745443967011301324273, −3.11286854645197789354337787934, −3.09511539833759666465238796610, −2.68181713973450480556465538386, −2.30236535280910748664620517995, −2.27216269510107732894365325685, −2.25282808466384982199113150622, −1.93353275365786013877437808135, −1.78406034225996911245922485760, −1.75796981814511933371357216513, −1.66493122688237954049324871011, −1.46324361554790387047470707127, −1.26700399564779224186915229426, −0.937635321912667336934340148633, −0.76584839327575808548131041259, −0.70568049398851539419256735121, −0.51533397506853286279368896396, −0.44926658143144563230536709623, −0.26767343996333052369294636123, −0.16350537271178732751894324320,
0.16350537271178732751894324320, 0.26767343996333052369294636123, 0.44926658143144563230536709623, 0.51533397506853286279368896396, 0.70568049398851539419256735121, 0.76584839327575808548131041259, 0.937635321912667336934340148633, 1.26700399564779224186915229426, 1.46324361554790387047470707127, 1.66493122688237954049324871011, 1.75796981814511933371357216513, 1.78406034225996911245922485760, 1.93353275365786013877437808135, 2.25282808466384982199113150622, 2.27216269510107732894365325685, 2.30236535280910748664620517995, 2.68181713973450480556465538386, 3.09511539833759666465238796610, 3.11286854645197789354337787934, 3.22921224745443967011301324273, 3.38358124510480296654621372773, 3.38470857199495160400649404749, 3.39228616223431254588499237447, 3.40804613057975487160854921369, 3.78725611736600871477000197084
Plot not available for L-functions of degree greater than 10.