L(s) = 1 | + 20·7-s − 40·13-s − 23·16-s + 40·25-s − 32·31-s + 80·37-s − 40·43-s + 200·49-s + 232·61-s − 280·67-s + 440·73-s − 800·91-s + 20·97-s + 140·103-s − 460·112-s − 16·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 800·169-s + 173-s + ⋯ |
L(s) = 1 | + 20/7·7-s − 3.07·13-s − 1.43·16-s + 8/5·25-s − 1.03·31-s + 2.16·37-s − 0.930·43-s + 4.08·49-s + 3.80·61-s − 4.17·67-s + 6.02·73-s − 8.79·91-s + 0.206·97-s + 1.35·103-s − 4.10·112-s − 0.132·121-s + 0.00787·127-s + 0.00763·131-s + 0.00729·137-s + 0.00719·139-s + 0.00671·149-s + 0.00662·151-s + 0.00636·157-s + 0.00613·163-s + 0.00598·167-s + 4.73·169-s + 0.00578·173-s + ⋯ |
Λ(s)=(=((332⋅58)s/2ΓC(s)8L(s)Λ(3−s)
Λ(s)=(=((332⋅58)s/2ΓC(s+1)8L(s)Λ(1−s)
Particular Values
L(23) |
≈ |
17.22982531 |
L(21) |
≈ |
17.22982531 |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 5 | 1−8pT2+39p2T4−8p5T6+p8T8 |
good | 2 | 1+23T4+273T8+23p8T12+p16T16 |
| 7 | (1−10T+50T2+480T3−4801T4+480p2T5+50p4T6−10p6T7+p8T8)2 |
| 11 | (1+8T2−14577T4+8p4T6+p8T8)2 |
| 13 | (1+20T+200T2−2760T3−56161T4−2760p2T5+200p4T6+20p6T7+p8T8)2 |
| 17 | (1+144322T4+p8T8)2 |
| 19 | (1−398T2+p4T4)4 |
| 23 | 1−517762T4+189766503363T8−517762p8T12+p16T16 |
| 29 | (1−568T2−384657T4−568p4T6+p8T8)2 |
| 31 | (1+8T−897T2+8p2T3+p4T4)4 |
| 37 | (1−20T+200T2−20p2T3+p4T4)4 |
| 41 | (1−2362T2+2753283T4−2362p4T6+p8T8)2 |
| 43 | (1+20T+200T2−69960T3−4118401T4−69960p2T5+200p4T6+20p6T7+p8T8)2 |
| 47 | 1+8681918T4+51564413496963T8+8681918p8T12+p16T16 |
| 53 | (1+3037282T4+p8T8)2 |
| 59 | (1+4712T2+10085583T4+4712p4T6+p8T8)2 |
| 61 | (1−58T−357T2−58p2T3+p4T4)4 |
| 67 | (1+140T+9800T2+115080T3−12095521T4+115080p2T5+9800p4T6+140p6T7+p8T8)2 |
| 71 | (1+6082T2+p4T4)4 |
| 73 | (1−110T+6050T2−110p2T3+p4T4)4 |
| 79 | (1+12338T2+113276163T4+12338p4T6+p8T8)2 |
| 83 | 1+30948638T4−1294474038083997T8+30948638p8T12+p16T16 |
| 89 | (1−pT)8(1+pT)8 |
| 97 | (1−10T+50T2+187680T3−89467681T4+187680p2T5+50p4T6−10p6T7+p8T8)2 |
show more | |
show less | |
L(s)=p∏ j=1∏16(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−4.64897182936310250161074030089, −4.54641298182923400719600449977, −4.46968934274527551023347130824, −4.46681186747022836630959840992, −4.18783359091639900176481467873, −4.10581530603600100404992290225, −4.01277910219000292246981813985, −3.93024760374787806435654056782, −3.30051113190840078345788710464, −3.28799782025716302389956245667, −3.19958990164059556225284551991, −3.04842711188112782948636152664, −2.74751683014254781328319201531, −2.73108853449954190467969906399, −2.41338314048273461268797627623, −2.17756299101604149336355291148, −2.05536650468224523762537964178, −2.00053678896078430869242214178, −1.84061328904944644722237138066, −1.60851625053961948931938487570, −1.51740588257524858104384594683, −0.72917276988044757311693842144, −0.62725646656248607109211676289, −0.62317473013916487506518725824, −0.54715903863425491032257209176,
0.54715903863425491032257209176, 0.62317473013916487506518725824, 0.62725646656248607109211676289, 0.72917276988044757311693842144, 1.51740588257524858104384594683, 1.60851625053961948931938487570, 1.84061328904944644722237138066, 2.00053678896078430869242214178, 2.05536650468224523762537964178, 2.17756299101604149336355291148, 2.41338314048273461268797627623, 2.73108853449954190467969906399, 2.74751683014254781328319201531, 3.04842711188112782948636152664, 3.19958990164059556225284551991, 3.28799782025716302389956245667, 3.30051113190840078345788710464, 3.93024760374787806435654056782, 4.01277910219000292246981813985, 4.10581530603600100404992290225, 4.18783359091639900176481467873, 4.46681186747022836630959840992, 4.46968934274527551023347130824, 4.54641298182923400719600449977, 4.64897182936310250161074030089
Plot not available for L-functions of degree greater than 10.