L(s) = 1 | + 4·3-s + 4·5-s − 4·11-s + 20·13-s + 16·15-s − 8·17-s + 8·19-s + 4·23-s − 8·25-s − 16·27-s − 16·29-s − 8·31-s − 16·33-s + 8·37-s + 80·39-s + 12·41-s − 4·43-s + 4·47-s − 32·51-s − 16·55-s + 32·57-s − 16·59-s + 32·61-s + 80·65-s + 16·69-s + 24·73-s − 32·75-s + ⋯ |
L(s) = 1 | + 2.30·3-s + 1.78·5-s − 1.20·11-s + 5.54·13-s + 4.13·15-s − 1.94·17-s + 1.83·19-s + 0.834·23-s − 8/5·25-s − 3.07·27-s − 2.97·29-s − 1.43·31-s − 2.78·33-s + 1.31·37-s + 12.8·39-s + 1.87·41-s − 0.609·43-s + 0.583·47-s − 4.48·51-s − 2.15·55-s + 4.23·57-s − 2.08·59-s + 4.09·61-s + 9.92·65-s + 1.92·69-s + 2.80·73-s − 3.69·75-s + ⋯ |
Λ(s)=(=((216⋅716⋅178)s/2ΓC(s)8L(s)Λ(2−s)
Λ(s)=(=((216⋅716⋅178)s/2ΓC(s+1/2)8L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
96.89492959 |
L(21) |
≈ |
96.89492959 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | 1 |
| 17 | (1+T)8 |
good | 3 | 1−4T+16T2−16pT3+125T4−292T5+616T6−1180T7+2165T8−1180pT9+616p2T10−292p3T11+125p4T12−16p6T13+16p6T14−4p7T15+p8T16 |
| 5 | 1−4T+24T2−84T3+61pT4−172pT5+496pT6−5972T7+14293T8−5972pT9+496p3T10−172p4T11+61p5T12−84p5T13+24p6T14−4p7T15+p8T16 |
| 11 | 1+4T+36T2+156T3+772T4+260pT5+11940T6+39604T7+142038T8+39604pT9+11940p2T10+260p4T11+772p4T12+156p5T13+36p6T14+4p7T15+p8T16 |
| 13 | 1−20T+242T2−2108T3+14688T4−85220T5+425054T6−1848812T7+7093070T8−1848812pT9+425054p2T10−85220p3T11+14688p4T12−2108p5T13+242p6T14−20p7T15+p8T16 |
| 19 | 1−8T+130T2−768T3+7300T4−34608T5+246198T6−51080pT7+5606838T8−51080p2T9+246198p2T10−34608p3T11+7300p4T12−768p5T13+130p6T14−8p7T15+p8T16 |
| 23 | 1−4T+90T2−540T3+4440T4−29276T5+164982T6−942116T7+4535198T8−942116pT9+164982p2T10−29276p3T11+4440p4T12−540p5T13+90p6T14−4p7T15+p8T16 |
| 29 | 1+16T+8pT2+2288T3+20820T4+156880T5+1107792T6+6773040T7+39031606T8+6773040pT9+1107792p2T10+156880p3T11+20820p4T12+2288p5T13+8p7T14+16p7T15+p8T16 |
| 31 | 1+8T+132T2+1148T3+339pT4+76248T5+557672T6+3391732T7+20312877T8+3391732pT9+557672p2T10+76248p3T11+339p5T12+1148p5T13+132p6T14+8p7T15+p8T16 |
| 37 | 1−8T+262T2−1752T3+30896T4−174584T5+2158362T6−10209672T7+97900174T8−10209672pT9+2158362p2T10−174584p3T11+30896p4T12−1752p5T13+262p6T14−8p7T15+p8T16 |
| 41 | 1−12T+252T2−2556T3+31145T4−259212T5+2352656T6−16138476T7+117350157T8−16138476pT9+2352656p2T10−259212p3T11+31145p4T12−2556p5T13+252p6T14−12p7T15+p8T16 |
| 43 | 1+4T+134T2−32T3+6463T4−33524T5+283988T6−1881912T7+14761517T8−1881912pT9+283988p2T10−33524p3T11+6463p4T12−32p5T13+134p6T14+4p7T15+p8T16 |
| 47 | 1−4T+212T2−620T3+19692T4−29500T5+1107892T6−256724T7+51399558T8−256724pT9+1107892p2T10−29500p3T11+19692p4T12−620p5T13+212p6T14−4p7T15+p8T16 |
| 53 | 1+182T2+396T3+18127T4+76688T5+1202396T6+7128472T7+67495349T8+7128472pT9+1202396p2T10+76688p3T11+18127p4T12+396p5T13+182p6T14+p8T16 |
| 59 | 1+16T+308T2+3024T3+35584T4+259920T5+2411692T6+14703504T7+135177774T8+14703504pT9+2411692p2T10+259920p3T11+35584p4T12+3024p5T13+308p6T14+16p7T15+p8T16 |
| 61 | 1−32T+780T2−13760T3+202241T4−2496952T5+26836056T6−251837332T7+2095384045T8−251837332pT9+26836056p2T10−2496952p3T11+202241p4T12−13760p5T13+780p6T14−32p7T15+p8T16 |
| 67 | 1+182T2−380T3+20055T4−58520T5+1944308T6−4410912T7+151707053T8−4410912pT9+1944308p2T10−58520p3T11+20055p4T12−380p5T13+182p6T14+p8T16 |
| 71 | 1+282T2−120T3+39300T4+5592T5+3710766T6+2456208T7+279763670T8+2456208pT9+3710766p2T10+5592p3T11+39300p4T12−120p5T13+282p6T14+p8T16 |
| 73 | 1−24T+532T2−7840T3+111593T4−1287208T5+14379232T6−136783428T7+1257242741T8−136783428pT9+14379232p2T10−1287208p3T11+111593p4T12−7840p5T13+532p6T14−24p7T15+p8T16 |
| 79 | 1−4T+412T2−980T3+78884T4−128196T5+9972860T6−14036628T7+919676534T8−14036628pT9+9972860p2T10−128196p3T11+78884p4T12−980p5T13+412p6T14−4p7T15+p8T16 |
| 83 | 1−28T+590T2−8124T3+100500T4−988060T5+9343514T6−75809692T7+692605078T8−75809692pT9+9343514p2T10−988060p3T11+100500p4T12−8124p5T13+590p6T14−28p7T15+p8T16 |
| 89 | 1−20T+628T2−9348T3+170452T4−2031132T5+27607732T6−271275276T7+2973835350T8−271275276pT9+27607732p2T10−2031132p3T11+170452p4T12−9348p5T13+628p6T14−20p7T15+p8T16 |
| 97 | 1−56T+2040T2−52648T3+1089417T4−18429928T5+264789328T6−3243680020T7+34414745117T8−3243680020pT9+264789328p2T10−18429928p3T11+1089417p4T12−52648p5T13+2040p6T14−56p7T15+p8T16 |
show more | |
show less | |
L(s)=p∏ j=1∏16(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−3.66815107272191255448819501807, −3.36722640436760921509794672440, −3.31074229452828336802700565226, −3.19908917824545086579352607243, −3.10503167744979575370749266539, −2.96466516312116932419056124281, −2.96364176519670467990755345573, −2.77501668657397723823843904395, −2.73951632506840970770739499870, −2.27741904580852919683964362800, −2.22998758619064200829577280762, −2.21431248410130303331426350607, −2.12185972904597207072534096091, −2.05236014544039079387587479111, −1.95318806206666422542220214243, −1.88753429925440673377817815430, −1.86967287483556514081064458890, −1.38817457350297941992360574867, −1.37580546528844004142723143907, −1.17040288994534890482874969269, −0.885259736099810619523120277286, −0.794758986820798593238873719151, −0.61832347012825404223812651152, −0.46589661966613965993927666612, −0.43475734108515463502525547193,
0.43475734108515463502525547193, 0.46589661966613965993927666612, 0.61832347012825404223812651152, 0.794758986820798593238873719151, 0.885259736099810619523120277286, 1.17040288994534890482874969269, 1.37580546528844004142723143907, 1.38817457350297941992360574867, 1.86967287483556514081064458890, 1.88753429925440673377817815430, 1.95318806206666422542220214243, 2.05236014544039079387587479111, 2.12185972904597207072534096091, 2.21431248410130303331426350607, 2.22998758619064200829577280762, 2.27741904580852919683964362800, 2.73951632506840970770739499870, 2.77501668657397723823843904395, 2.96364176519670467990755345573, 2.96466516312116932419056124281, 3.10503167744979575370749266539, 3.19908917824545086579352607243, 3.31074229452828336802700565226, 3.36722640436760921509794672440, 3.66815107272191255448819501807
Plot not available for L-functions of degree greater than 10.