L(s) = 1 | + 16-s + 2·25-s − 4·37-s − 8·41-s + 4·53-s + 4·61-s + 8·101-s + 4·109-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 8·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + ⋯ |
L(s) = 1 | + 16-s + 2·25-s − 4·37-s − 8·41-s + 4·53-s + 4·61-s + 8·101-s + 4·109-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 8·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 7^{16} \cdot 17^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 7^{16} \cdot 17^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.677833456\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.677833456\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - T^{4} + T^{8} \) |
| 7 | \( 1 \) |
| 17 | \( 1 - T^{4} + T^{8} \) |
good | 3 | \( 1 - T^{8} + T^{16} \) |
| 5 | \( ( 1 - T^{2} + T^{4} )^{2}( 1 - T^{4} + T^{8} ) \) |
| 11 | \( 1 - T^{8} + T^{16} \) |
| 13 | \( ( 1 - T )^{8}( 1 + T )^{8} \) |
| 19 | \( ( 1 - T^{4} + T^{8} )^{2} \) |
| 23 | \( 1 - T^{8} + T^{16} \) |
| 29 | \( ( 1 + T^{2} )^{4}( 1 + T^{4} )^{2} \) |
| 31 | \( 1 - T^{8} + T^{16} \) |
| 37 | \( ( 1 + T + T^{2} )^{4}( 1 - T^{4} + T^{8} ) \) |
| 41 | \( ( 1 + T )^{8}( 1 + T^{4} )^{2} \) |
| 43 | \( ( 1 + T^{4} )^{4} \) |
| 47 | \( ( 1 - T^{2} + T^{4} )^{4} \) |
| 53 | \( ( 1 - T + T^{2} )^{4}( 1 - T^{2} + T^{4} )^{2} \) |
| 59 | \( ( 1 - T^{4} + T^{8} )^{2} \) |
| 61 | \( ( 1 - T + T^{2} )^{4}( 1 - T^{4} + T^{8} ) \) |
| 67 | \( ( 1 - T + T^{2} )^{4}( 1 + T + T^{2} )^{4} \) |
| 71 | \( ( 1 + T^{8} )^{2} \) |
| 73 | \( ( 1 - T^{2} + T^{4} )^{2}( 1 - T^{4} + T^{8} ) \) |
| 79 | \( 1 - T^{8} + T^{16} \) |
| 83 | \( ( 1 + T^{4} )^{4} \) |
| 89 | \( ( 1 - T^{2} + T^{4} )^{4} \) |
| 97 | \( ( 1 + T^{2} )^{4}( 1 + T^{4} )^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{16} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−3.67041184292760459942877887781, −3.62955722604908126287703879846, −3.53494915371445483046303017657, −3.41771687755488308128885370052, −3.34899124692051940482125257461, −3.30949861999462570812819989718, −3.28046304674850454497978475998, −3.03258338465119621035031858123, −2.96917741610359589758718964647, −2.76597752983309755168459772768, −2.46550938726616524475874508777, −2.43011682657594202268918753013, −2.35909583238435316373018166071, −2.11276847089133480192130302580, −2.04036288934781870613153549600, −1.87578948984808099513278947038, −1.86137447689934077097655311697, −1.81659003137354326186323287432, −1.72835739662762071265245408365, −1.17118602317589879789733212688, −1.13907200535183769131176040800, −1.05740136694526897986230506952, −1.05328748996031345716370664575, −0.58539248629331278947778383125, −0.38077843168179938311252986372,
0.38077843168179938311252986372, 0.58539248629331278947778383125, 1.05328748996031345716370664575, 1.05740136694526897986230506952, 1.13907200535183769131176040800, 1.17118602317589879789733212688, 1.72835739662762071265245408365, 1.81659003137354326186323287432, 1.86137447689934077097655311697, 1.87578948984808099513278947038, 2.04036288934781870613153549600, 2.11276847089133480192130302580, 2.35909583238435316373018166071, 2.43011682657594202268918753013, 2.46550938726616524475874508777, 2.76597752983309755168459772768, 2.96917741610359589758718964647, 3.03258338465119621035031858123, 3.28046304674850454497978475998, 3.30949861999462570812819989718, 3.34899124692051940482125257461, 3.41771687755488308128885370052, 3.53494915371445483046303017657, 3.62955722604908126287703879846, 3.67041184292760459942877887781
Plot not available for L-functions of degree greater than 10.