Properties

Label 16-3332e8-1.1-c0e8-0-6
Degree 1616
Conductor 1.519×10281.519\times 10^{28}
Sign 11
Analytic cond. 58.465158.4651
Root an. cond. 1.289521.28952
Motivic weight 00
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank 00

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 16-s + 2·25-s − 4·37-s − 8·41-s + 4·53-s + 4·61-s + 8·101-s + 4·109-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 8·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + ⋯
L(s)  = 1  + 16-s + 2·25-s − 4·37-s − 8·41-s + 4·53-s + 4·61-s + 8·101-s + 4·109-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 8·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + ⋯

Functional equation

Λ(s)=((216716178)s/2ΓC(s)8L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 7^{16} \cdot 17^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}
Λ(s)=((216716178)s/2ΓC(s)8L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 7^{16} \cdot 17^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}

Invariants

Degree: 1616
Conductor: 2167161782^{16} \cdot 7^{16} \cdot 17^{8}
Sign: 11
Analytic conductor: 58.465158.4651
Root analytic conductor: 1.289521.28952
Motivic weight: 00
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: 00
Selberg data: (16, 216716178, ( :[0]8), 1)(16,\ 2^{16} \cdot 7^{16} \cdot 17^{8} ,\ ( \ : [0]^{8} ),\ 1 )

Particular Values

L(12)L(\frac{1}{2}) \approx 1.6778334561.677833456
L(12)L(\frac12) \approx 1.6778334561.677833456
L(1)L(1) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1T4+T8 1 - T^{4} + T^{8}
7 1 1
17 1T4+T8 1 - T^{4} + T^{8}
good3 1T8+T16 1 - T^{8} + T^{16}
5 (1T2+T4)2(1T4+T8) ( 1 - T^{2} + T^{4} )^{2}( 1 - T^{4} + T^{8} )
11 1T8+T16 1 - T^{8} + T^{16}
13 (1T)8(1+T)8 ( 1 - T )^{8}( 1 + T )^{8}
19 (1T4+T8)2 ( 1 - T^{4} + T^{8} )^{2}
23 1T8+T16 1 - T^{8} + T^{16}
29 (1+T2)4(1+T4)2 ( 1 + T^{2} )^{4}( 1 + T^{4} )^{2}
31 1T8+T16 1 - T^{8} + T^{16}
37 (1+T+T2)4(1T4+T8) ( 1 + T + T^{2} )^{4}( 1 - T^{4} + T^{8} )
41 (1+T)8(1+T4)2 ( 1 + T )^{8}( 1 + T^{4} )^{2}
43 (1+T4)4 ( 1 + T^{4} )^{4}
47 (1T2+T4)4 ( 1 - T^{2} + T^{4} )^{4}
53 (1T+T2)4(1T2+T4)2 ( 1 - T + T^{2} )^{4}( 1 - T^{2} + T^{4} )^{2}
59 (1T4+T8)2 ( 1 - T^{4} + T^{8} )^{2}
61 (1T+T2)4(1T4+T8) ( 1 - T + T^{2} )^{4}( 1 - T^{4} + T^{8} )
67 (1T+T2)4(1+T+T2)4 ( 1 - T + T^{2} )^{4}( 1 + T + T^{2} )^{4}
71 (1+T8)2 ( 1 + T^{8} )^{2}
73 (1T2+T4)2(1T4+T8) ( 1 - T^{2} + T^{4} )^{2}( 1 - T^{4} + T^{8} )
79 1T8+T16 1 - T^{8} + T^{16}
83 (1+T4)4 ( 1 + T^{4} )^{4}
89 (1T2+T4)4 ( 1 - T^{2} + T^{4} )^{4}
97 (1+T2)4(1+T4)2 ( 1 + T^{2} )^{4}( 1 + T^{4} )^{2}
show more
show less
   L(s)=p j=116(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{16} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−3.67041184292760459942877887781, −3.62955722604908126287703879846, −3.53494915371445483046303017657, −3.41771687755488308128885370052, −3.34899124692051940482125257461, −3.30949861999462570812819989718, −3.28046304674850454497978475998, −3.03258338465119621035031858123, −2.96917741610359589758718964647, −2.76597752983309755168459772768, −2.46550938726616524475874508777, −2.43011682657594202268918753013, −2.35909583238435316373018166071, −2.11276847089133480192130302580, −2.04036288934781870613153549600, −1.87578948984808099513278947038, −1.86137447689934077097655311697, −1.81659003137354326186323287432, −1.72835739662762071265245408365, −1.17118602317589879789733212688, −1.13907200535183769131176040800, −1.05740136694526897986230506952, −1.05328748996031345716370664575, −0.58539248629331278947778383125, −0.38077843168179938311252986372, 0.38077843168179938311252986372, 0.58539248629331278947778383125, 1.05328748996031345716370664575, 1.05740136694526897986230506952, 1.13907200535183769131176040800, 1.17118602317589879789733212688, 1.72835739662762071265245408365, 1.81659003137354326186323287432, 1.86137447689934077097655311697, 1.87578948984808099513278947038, 2.04036288934781870613153549600, 2.11276847089133480192130302580, 2.35909583238435316373018166071, 2.43011682657594202268918753013, 2.46550938726616524475874508777, 2.76597752983309755168459772768, 2.96917741610359589758718964647, 3.03258338465119621035031858123, 3.28046304674850454497978475998, 3.30949861999462570812819989718, 3.34899124692051940482125257461, 3.41771687755488308128885370052, 3.53494915371445483046303017657, 3.62955722604908126287703879846, 3.67041184292760459942877887781

Graph of the ZZ-function along the critical line

Plot not available for L-functions of degree greater than 10.