L(s) = 1 | + 4·2-s − 3-s + 8·4-s + 6·5-s − 4·6-s + 3·7-s + 18·8-s − 2·9-s + 24·10-s − 8·11-s − 8·12-s + 9·13-s + 12·14-s − 6·15-s + 34·16-s − 7·17-s − 8·18-s + 5·19-s + 48·20-s − 3·21-s − 32·22-s − 18·23-s − 18·24-s + 31·25-s + 36·26-s − 3·27-s + 24·28-s + ⋯ |
L(s) = 1 | + 2.82·2-s − 0.577·3-s + 4·4-s + 2.68·5-s − 1.63·6-s + 1.13·7-s + 6.36·8-s − 2/3·9-s + 7.58·10-s − 2.41·11-s − 2.30·12-s + 2.49·13-s + 3.20·14-s − 1.54·15-s + 17/2·16-s − 1.69·17-s − 1.88·18-s + 1.14·19-s + 10.7·20-s − 0.654·21-s − 6.82·22-s − 3.75·23-s − 3.67·24-s + 31/5·25-s + 7.06·26-s − 0.577·27-s + 4.53·28-s + ⋯ |
Λ(s)=(=((3116)s/2ΓC(s)8L(s)Λ(2−s)
Λ(s)=(=((3116)s/2ΓC(s+1/2)8L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
104.4368484 |
L(21) |
≈ |
104.4368484 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 31 | 1 |
good | 2 | (1−pT+pT2−5T3+11T4−5pT5+p3T6−p4T7+p4T8)2 |
| 3 | 1+T+pT2+8T3+8T4−7T5+2pT6−56T7−137T8−56pT9+2p3T10−7p3T11+8p4T12+8p5T13+p7T14+p7T15+p8T16 |
| 5 | (1−3T−2T2−3T3+51T4−3pT5−2p2T6−3p3T7+p4T8)2 |
| 7 | 1−3T+pT2−36T3+108T4−219T5+122pT6−2628T7+5483T8−2628pT9+122p3T10−219p3T11+108p4T12−36p5T13+p7T14−3p7T15+p8T16 |
| 11 | 1+8T+51T2+252T3+1196T4+5184T5+20789T6+76586T7+264267T8+76586pT9+20789p2T10+5184p3T11+1196p4T12+252p5T13+51p6T14+8p7T15+p8T16 |
| 13 | 1−9T+58T2−177T3+378T4−252T5+452pT6−46026T7+235283T8−46026pT9+452p3T10−252p3T11+378p4T12−177p5T13+58p6T14−9p7T15+p8T16 |
| 17 | 1+7T+47T2+144T3+628T4+1131T5+13454T6+53842T7+353533T8+53842pT9+13454p2T10+1131p3T11+628p4T12+144p5T13+47p6T14+7p7T15+p8T16 |
| 19 | 1−5T+pT2−160T3+800T4−2765T5+914pT6−88480T7+312079T8−88480pT9+914p3T10−2765p3T11+800p4T12−160p5T13+p7T14−5p7T15+p8T16 |
| 23 | (1+9T+38T2+255T3+1741T4+255pT5+38p2T6+9p3T7+p4T8)2 |
| 29 | (1−10T+31T2+160T3−2079T4+160pT5+31p2T6−10p3T7+p4T8)2 |
| 37 | (1−4T−57T2+4T3+3368T4+4pT5−57p2T6−4p3T7+p4T8)2 |
| 41 | 1−12T+121T2−348T3+336T4+17304T5+1999pT6−1336404T7+16471727T8−1336404pT9+1999p3T10+17304p3T11+336p4T12−348p5T13+121p6T14−12p7T15+p8T16 |
| 43 | 1+6T+63T2+418T3+2778T4−932T5+50731T6−406266T7−2563037T8−406266pT9+50731p2T10−932p3T11+2778p4T12+418p5T13+63p6T14+6p7T15+p8T16 |
| 47 | (1−2T−23T2+290T3+831T4+290pT5−23p2T6−2p3T7+p4T8)2 |
| 53 | 1−9T−37T2+588T3−2592T4+22563T5−122714T6−1504026T7+23688233T8−1504026pT9−122714p2T10+22563p3T11−2592p4T12+588p5T13−37p6T14−9p7T15+p8T16 |
| 59 | 1−15T+199T2−1620T3+15540T4−116895T5+1250126T6−9793080T7+87433079T8−9793080pT9+1250126p2T10−116895p3T11+15540p4T12−1620p5T13+199p6T14−15p7T15+p8T16 |
| 61 | (1−4T+46T2−4pT3+p2T4)4 |
| 67 | (1−4T−117T2+4T3+12128T4+4pT5−117p2T6−4p3T7+p4T8)2 |
| 71 | 1+18T+271T2+2502T3+25686T4+226044T5+2596679T6+24000066T7+229833107T8+24000066pT9+2596679p2T10+226044p3T11+25686p4T12+2502p5T13+271p6T14+18p7T15+p8T16 |
| 73 | 1−24T+343T2−1872T3−7452T4+251688T5−1300339T6−7670556T7+170336663T8−7670556pT9−1300339p2T10+251688p3T11−7452p4T12−1872p5T13+343p6T14−24p7T15+p8T16 |
| 79 | 1+pT2−p3T6−p4T8−p5T10+p7T14+p8T16 |
| 83 | 1+11T+108T2−1167T3−19912T4−220392T5−157264T6+14295074T7+219932193T8+14295074pT9−157264p2T10−220392p3T11−19912p4T12−1167p5T13+108p6T14+11p7T15+p8T16 |
| 89 | (1−10T−29T2+1060T3−7299T4+1060pT5−29p2T6−10p3T7+p4T8)2 |
| 97 | (1−27T+182T2+2625T3−53249T4+2625pT5+182p2T6−27p3T7+p4T8)2 |
show more | |
show less | |
L(s)=p∏ j=1∏16(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−4.47564753414944653799599259156, −4.35968728975303028852142546871, −3.90991133505330854836096114206, −3.87902653562053664384338689258, −3.85363529720630644249830907077, −3.84187127821276164649644786489, −3.61321018264443534191077253947, −3.49448661823778809456751288551, −3.47383800564050540754393063253, −3.10298284152902397063568444360, −2.73136970837078241374868833766, −2.68151284045379050695067268689, −2.54390933214619382194819548639, −2.43243511668711924672276153631, −2.33158367423491637773942860434, −2.31277619470865572329702827547, −2.26810333519197052247130878578, −1.97708343660981188382211632110, −1.82131486956463051310435779230, −1.53334860072137652060278531357, −1.37809781561638034671461699036, −1.18893176681751076926950158809, −0.987628108808365433353935412980, −0.75514851786273606817133803720, −0.46677001763734334004821129215,
0.46677001763734334004821129215, 0.75514851786273606817133803720, 0.987628108808365433353935412980, 1.18893176681751076926950158809, 1.37809781561638034671461699036, 1.53334860072137652060278531357, 1.82131486956463051310435779230, 1.97708343660981188382211632110, 2.26810333519197052247130878578, 2.31277619470865572329702827547, 2.33158367423491637773942860434, 2.43243511668711924672276153631, 2.54390933214619382194819548639, 2.68151284045379050695067268689, 2.73136970837078241374868833766, 3.10298284152902397063568444360, 3.47383800564050540754393063253, 3.49448661823778809456751288551, 3.61321018264443534191077253947, 3.84187127821276164649644786489, 3.85363529720630644249830907077, 3.87902653562053664384338689258, 3.90991133505330854836096114206, 4.35968728975303028852142546871, 4.47564753414944653799599259156
Plot not available for L-functions of degree greater than 10.