L(s) = 1 | + 4·2-s + 3-s + 8·4-s + 6·5-s + 4·6-s + 3·7-s + 18·8-s − 2·9-s + 24·10-s + 8·11-s + 8·12-s − 9·13-s + 12·14-s + 6·15-s + 34·16-s + 7·17-s − 8·18-s + 5·19-s + 48·20-s + 3·21-s + 32·22-s + 18·23-s + 18·24-s + 31·25-s − 36·26-s + 3·27-s + 24·28-s + ⋯ |
L(s) = 1 | + 2.82·2-s + 0.577·3-s + 4·4-s + 2.68·5-s + 1.63·6-s + 1.13·7-s + 6.36·8-s − 2/3·9-s + 7.58·10-s + 2.41·11-s + 2.30·12-s − 2.49·13-s + 3.20·14-s + 1.54·15-s + 17/2·16-s + 1.69·17-s − 1.88·18-s + 1.14·19-s + 10.7·20-s + 0.654·21-s + 6.82·22-s + 3.75·23-s + 3.67·24-s + 31/5·25-s − 7.06·26-s + 0.577·27-s + 4.53·28-s + ⋯ |
Λ(s)=(=((3116)s/2ΓC(s)8L(s)Λ(2−s)
Λ(s)=(=((3116)s/2ΓC(s+1/2)8L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
285.0013609 |
L(21) |
≈ |
285.0013609 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 31 | 1 |
good | 2 | (1−pT+pT2−5T3+11T4−5pT5+p3T6−p4T7+p4T8)2 |
| 3 | 1−T+pT2−8T3+8T4+7T5+2pT6+56T7−137T8+56pT9+2p3T10+7p3T11+8p4T12−8p5T13+p7T14−p7T15+p8T16 |
| 5 | (1−3T−2T2−3T3+51T4−3pT5−2p2T6−3p3T7+p4T8)2 |
| 7 | 1−3T+pT2−36T3+108T4−219T5+122pT6−2628T7+5483T8−2628pT9+122p3T10−219p3T11+108p4T12−36p5T13+p7T14−3p7T15+p8T16 |
| 11 | 1−8T+51T2−252T3+1196T4−5184T5+20789T6−76586T7+264267T8−76586pT9+20789p2T10−5184p3T11+1196p4T12−252p5T13+51p6T14−8p7T15+p8T16 |
| 13 | 1+9T+58T2+177T3+378T4+252T5+452pT6+46026T7+235283T8+46026pT9+452p3T10+252p3T11+378p4T12+177p5T13+58p6T14+9p7T15+p8T16 |
| 17 | 1−7T+47T2−144T3+628T4−1131T5+13454T6−53842T7+353533T8−53842pT9+13454p2T10−1131p3T11+628p4T12−144p5T13+47p6T14−7p7T15+p8T16 |
| 19 | 1−5T+pT2−160T3+800T4−2765T5+914pT6−88480T7+312079T8−88480pT9+914p3T10−2765p3T11+800p4T12−160p5T13+p7T14−5p7T15+p8T16 |
| 23 | (1−9T+38T2−255T3+1741T4−255pT5+38p2T6−9p3T7+p4T8)2 |
| 29 | (1+10T+31T2−160T3−2079T4−160pT5+31p2T6+10p3T7+p4T8)2 |
| 37 | (1+4T−57T2−4T3+3368T4−4pT5−57p2T6+4p3T7+p4T8)2 |
| 41 | 1−12T+121T2−348T3+336T4+17304T5+1999pT6−1336404T7+16471727T8−1336404pT9+1999p3T10+17304p3T11+336p4T12−348p5T13+121p6T14−12p7T15+p8T16 |
| 43 | 1−6T+63T2−418T3+2778T4+932T5+50731T6+406266T7−2563037T8+406266pT9+50731p2T10+932p3T11+2778p4T12−418p5T13+63p6T14−6p7T15+p8T16 |
| 47 | (1−2T−23T2+290T3+831T4+290pT5−23p2T6−2p3T7+p4T8)2 |
| 53 | 1+9T−37T2−588T3−2592T4−22563T5−122714T6+1504026T7+23688233T8+1504026pT9−122714p2T10−22563p3T11−2592p4T12−588p5T13−37p6T14+9p7T15+p8T16 |
| 59 | 1−15T+199T2−1620T3+15540T4−116895T5+1250126T6−9793080T7+87433079T8−9793080pT9+1250126p2T10−116895p3T11+15540p4T12−1620p5T13+199p6T14−15p7T15+p8T16 |
| 61 | (1+4T+46T2+4pT3+p2T4)4 |
| 67 | (1−4T−117T2+4T3+12128T4+4pT5−117p2T6−4p3T7+p4T8)2 |
| 71 | 1+18T+271T2+2502T3+25686T4+226044T5+2596679T6+24000066T7+229833107T8+24000066pT9+2596679p2T10+226044p3T11+25686p4T12+2502p5T13+271p6T14+18p7T15+p8T16 |
| 73 | 1+24T+343T2+1872T3−7452T4−251688T5−1300339T6+7670556T7+170336663T8+7670556pT9−1300339p2T10−251688p3T11−7452p4T12+1872p5T13+343p6T14+24p7T15+p8T16 |
| 79 | 1+pT2−p3T6−p4T8−p5T10+p7T14+p8T16 |
| 83 | 1−11T+108T2+1167T3−19912T4+220392T5−157264T6−14295074T7+219932193T8−14295074pT9−157264p2T10+220392p3T11−19912p4T12+1167p5T13+108p6T14−11p7T15+p8T16 |
| 89 | (1+10T−29T2−1060T3−7299T4−1060pT5−29p2T6+10p3T7+p4T8)2 |
| 97 | (1−27T+182T2+2625T3−53249T4+2625pT5+182p2T6−27p3T7+p4T8)2 |
show more | |
show less | |
L(s)=p∏ j=1∏16(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−4.40320517297571119446135838817, −4.26080710857617250254156019745, −4.23056971756306779948023171388, −4.02582010845954657577175003550, −4.00091060003557411105258830534, −3.55634703334064918925646921638, −3.31110710029314397960220381279, −3.22429529185125859762335658998, −3.19360904513210359462938042705, −3.18937715585594054891525800029, −3.15544112508930895651549971346, −3.04930395988485338611545431367, −2.72418542102706745976458880012, −2.30907700241307605454655953126, −2.23375051000977118070850058100, −2.18931743034099248309242614530, −2.16281559545138607165417664204, −2.05754891235659172136524646015, −1.77471749466902243504093184211, −1.43122146264104049622760965598, −1.39143580666578750333343638301, −1.38741620553443129179589679018, −0.985790913637980537082113421009, −0.956921520450822301892595590620, −0.58781102886242295105401545509,
0.58781102886242295105401545509, 0.956921520450822301892595590620, 0.985790913637980537082113421009, 1.38741620553443129179589679018, 1.39143580666578750333343638301, 1.43122146264104049622760965598, 1.77471749466902243504093184211, 2.05754891235659172136524646015, 2.16281559545138607165417664204, 2.18931743034099248309242614530, 2.23375051000977118070850058100, 2.30907700241307605454655953126, 2.72418542102706745976458880012, 3.04930395988485338611545431367, 3.15544112508930895651549971346, 3.18937715585594054891525800029, 3.19360904513210359462938042705, 3.22429529185125859762335658998, 3.31110710029314397960220381279, 3.55634703334064918925646921638, 4.00091060003557411105258830534, 4.02582010845954657577175003550, 4.23056971756306779948023171388, 4.26080710857617250254156019745, 4.40320517297571119446135838817
Plot not available for L-functions of degree greater than 10.