L(s) = 1 | + 4·2-s − 4·3-s + 8·4-s − 4·5-s − 16·6-s + 3·7-s + 18·8-s + 13·9-s − 16·10-s − 2·11-s − 32·12-s − 4·13-s + 12·14-s + 16·15-s + 34·16-s + 2·17-s + 52·18-s + 5·19-s − 32·20-s − 12·21-s − 8·22-s + 28·23-s − 72·24-s + 26·25-s − 16·26-s − 32·27-s + 24·28-s + ⋯ |
L(s) = 1 | + 2.82·2-s − 2.30·3-s + 4·4-s − 1.78·5-s − 6.53·6-s + 1.13·7-s + 6.36·8-s + 13/3·9-s − 5.05·10-s − 0.603·11-s − 9.23·12-s − 1.10·13-s + 3.20·14-s + 4.13·15-s + 17/2·16-s + 0.485·17-s + 12.2·18-s + 1.14·19-s − 7.15·20-s − 2.61·21-s − 1.70·22-s + 5.83·23-s − 14.6·24-s + 26/5·25-s − 3.13·26-s − 6.15·27-s + 4.53·28-s + ⋯ |
Λ(s)=(=((3116)s/2ΓC(s)8L(s)Λ(2−s)
Λ(s)=(=((3116)s/2ΓC(s+1/2)8L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
46.93469805 |
L(21) |
≈ |
46.93469805 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 31 | 1 |
good | 2 | (1−pT+pT2−5T3+11T4−5pT5+p3T6−p4T7+p4T8)2 |
| 3 | 1+4T+pT2−8T3−4pT4−8T5−19T6+22pT7+283T8+22p2T9−19p2T10−8p3T11−4p5T12−8p5T13+p7T14+4p7T15+p8T16 |
| 5 | (1+T−4T2+pT3+p2T4)4 |
| 7 | 1−3T−3T2+34T3−102T4+181T5−26T6−264pT7+8023T8−264p2T9−26p2T10+181p3T11−102p4T12+34p5T13−3p6T14−3p7T15+p8T16 |
| 11 | 1+2T+pT2+58T3+116T4−164T5+39pT6−4756T7−24153T8−4756pT9+39p3T10−164p3T11+116p4T12+58p5T13+p7T14+2p7T15+p8T16 |
| 13 | 1+4T+pT2−88T3−532T4−1928T5−109T6+23966T7+124003T8+23966pT9−109p2T10−1928p3T11−532p4T12−88p5T13+p7T14+4p7T15+p8T16 |
| 17 | 1−2T−3T2+126T3−532T4+84T5+3479T6−28082T7+52803T8−28082pT9+3479p2T10+84p3T11−532p4T12+126p5T13−3p6T14−2p7T15+p8T16 |
| 19 | 1−5T+29T2+70T3−590T4+4435T5−2714T6−42900T7+426339T8−42900pT9−2714p2T10+4435p3T11−590p4T12+70p5T13+29p6T14−5p7T15+p8T16 |
| 23 | (1−14T+113T2−750T3+4121T4−750pT5+113p2T6−14p3T7+p4T8)2 |
| 29 | (1−10T+11T2+10pT3−2239T4+10p2T5+11p2T6−10p3T7+p4T8)2 |
| 37 | (1+2T−33T2+2pT3+p2T4)4 |
| 41 | 1−7T+pT2−518T3+3626T4−15911T5+3954pT6−1177414T7+5416137T8−1177414pT9+3954p3T10−15911p3T11+3626p4T12−518p5T13+p7T14−7p7T15+p8T16 |
| 43 | 1−6T+63T2+22T3−372T4+19372T5−833pT6+91506T7+3060523T8+91506pT9−833p3T10+19372p3T11−372p4T12+22p5T13+63p6T14−6p7T15+p8T16 |
| 47 | (1−12T+17T2+60T3+961T4+60pT5+17p2T6−12p3T7+p4T8)2 |
| 53 | 1−16T+213T2−2088T3+21008T4−187488T5+1667411T6−13076524T7+100516383T8−13076524pT9+1667411p2T10−187488p3T11+21008p4T12−2088p5T13+213p6T14−16p7T15+p8T16 |
| 59 | 1+5T+69T2−270T3−1990T4−37635T5−145834T6+485900T7+5823099T8+485900pT9−145834p2T10−37635p3T11−1990p4T12−270p5T13+69p6T14+5p7T15+p8T16 |
| 61 | (1−6T+6T2−6pT3+p2T4)4 |
| 67 | (1+8T−3T2+8pT3+p2T4)4 |
| 71 | 1+23T+221T2−18T3−21614T4−255201T5−803866T6+12228416T7+191155087T8+12228416pT9−803866p2T10−255201p3T11−21614p4T12−18p5T13+221p6T14+23p7T15+p8T16 |
| 73 | 1+14T+193T2+1162T3+10388T4+28532T5+925511T6+7337176T7+107602183T8+7337176pT9+925511p2T10+28532p3T11+10388p4T12+1162p5T13+193p6T14+14p7T15+p8T16 |
| 79 | 1−20T+319T2−2800T3+25940T4−208760T5+2905241T6−31993630T7+344475259T8−31993630pT9+2905241p2T10−208760p3T11+25940p4T12−2800p5T13+319p6T14−20p7T15+p8T16 |
| 83 | 1+14T+3T2−1578T3−19132T4−149148T5−347179T6+14598716T7+238036263T8+14598716pT9−347179p2T10−149148p3T11−19132p4T12−1578p5T13+3p6T14+14p7T15+p8T16 |
| 89 | (1−20T+71T2+690T3−7699T4+690pT5+71p2T6−20p3T7+p4T8)2 |
| 97 | (1−27T+192T2+955T3−23289T4+955pT5+192p2T6−27p3T7+p4T8)2 |
show more | |
show less | |
L(s)=p∏ j=1∏16(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−4.52435980719603680001100598172, −4.39448573548930614357429059339, −4.29061794898971746077756115836, −3.83449799193111635304736941703, −3.81442691856251828230523749240, −3.80676860411639364076520757657, −3.74461803141583286952812632724, −3.67352087325942085493796337293, −3.36611556884902977325671845325, −3.10556657297953477120340437343, −2.91391289803254885743235969231, −2.80098343118264488974724986299, −2.73699340012843923509883138040, −2.52205750128830774953872616689, −2.49922807003681699770312221161, −2.35380088071299758194791094981, −2.26903554387706356422805868926, −1.54690774430578196714892649507, −1.50705092370514977211226580736, −1.46552546852412245497800009767, −1.07486563567061832500900629791, −1.04939137955881516980091942530, −0.944001138226368537933677893660, −0.73049204778867155993852864620, −0.56906579653739646137767397002,
0.56906579653739646137767397002, 0.73049204778867155993852864620, 0.944001138226368537933677893660, 1.04939137955881516980091942530, 1.07486563567061832500900629791, 1.46552546852412245497800009767, 1.50705092370514977211226580736, 1.54690774430578196714892649507, 2.26903554387706356422805868926, 2.35380088071299758194791094981, 2.49922807003681699770312221161, 2.52205750128830774953872616689, 2.73699340012843923509883138040, 2.80098343118264488974724986299, 2.91391289803254885743235969231, 3.10556657297953477120340437343, 3.36611556884902977325671845325, 3.67352087325942085493796337293, 3.74461803141583286952812632724, 3.80676860411639364076520757657, 3.81442691856251828230523749240, 3.83449799193111635304736941703, 4.29061794898971746077756115836, 4.39448573548930614357429059339, 4.52435980719603680001100598172
Plot not available for L-functions of degree greater than 10.